Probability Distributions
Uniform Distribution
Rolling a dice

$$
\begin{aligned}
& \begin{array}{lllllll}
x & 1 & 2 & 3 & 4 & 5 & 6
\end{array} \\
& P(X=x) \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6} \frac{1}{6} \\
& P(x \subset x)
\end{aligned}
$$

Other Discrete Distributions
Spin coin 3 Times and count Heads

Let x be number of Heads

x	0	1	2	3
$P(x=x)$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

Exercise GA

1) a) height x cm not discrete because height is a continuous variable
b) number of G's rolled is discrete countable - integer between 0 and 100
C number of days in weet - disirete countasle integer $0,1,2,3,4,5,6,7$
2)

$$
\begin{aligned}
& \text { 2, } 2 \\
& \text { 2,3 } \\
& \text { 3, } 2 \\
& \text { 3, } 3 \\
& \begin{array}{llll}
x & 4 & 5 & 6 \\
\times & \frac{1}{4} & \frac{2}{4} & \frac{1}{4}
\end{array} \\
& P(x=x)=\left\{\begin{array}{cl}
0.25, & x=4,6 \\
0.5, & x=5
\end{array}\right.
\end{aligned}
$$

probability mass fonction
5) $\quad P(x=x)=k x \quad x=1,2,3,4$
a)

$$
P(x=x)^{x} \begin{array}{ccccc}
1 & 2 & 3 & 4 \\
& k & 2 k & 3 k & 4 k
\end{array}
$$

$$
\begin{gathered}
k+2 k+3 k+4 k=1 \\
10 k=1 \\
k=\frac{1}{10}
\end{gathered}
$$

7)

$$
\begin{aligned}
& P(X=x)= \begin{cases}0.1 & x=-2,-1 \\
\beta & x=0,1 \\
0.2 & x=2\end{cases} \\
& x-2-10012 \\
& P(x=x) \quad 0.1 \\
& 0.1 \beta \beta 0.2
\end{aligned}
$$

b)

$$
\left.\begin{array}{c}
0.1+0.1+\beta+\beta+0.2=1 \\
2 \beta+0.4=1 \\
\beta=0.3 \\
x(x=x) \quad 0.1 \\
p-1
\end{array}\right)
$$

c

$$
\begin{aligned}
P(-1 \leqslant x<2) & =0.1+0.3+0.3 \\
& =0.7
\end{aligned}
$$

9) a) $p(x=1)=\frac{1}{50}$
b) $P(x \geqslant 28)=\frac{50-27}{50}=\frac{23}{50}$
c) $p(13<x<42)$

$$
\frac{41-13}{50}=\frac{28}{50}
$$

11) $\quad P(H)=\frac{2}{3}$

$$
\begin{array}{ll}
T T T T & P(T T T T)=\left(\frac{1}{3}\right)^{4}=\frac{1}{81} \\
T T T H & P(T T T H)=\left(\frac{1}{3}\right)^{3} \times \frac{2}{3}=\frac{2}{81} \\
T T H & P(T T H)=\left(\frac{1}{3}\right)^{2} \times \frac{2}{3}=\frac{2}{27} \text { or } \frac{6}{81} \\
T H &
\end{array}
$$

$$
\begin{aligned}
& P(T H)=\frac{1}{3} \times \frac{2}{3}=\frac{2}{9}=\frac{18}{81} \\
& P(H)=\frac{2}{3}=\frac{54}{81}
\end{aligned}
$$

$X=$ number of tosses

$$
\begin{array}{ccccc}
x & 1 & 2 & 3 & 4 \\
p(x=x) & \frac{54}{81} & \frac{18}{81} & \frac{6}{81} & \frac{3}{81}
\end{array}
$$

b) Fin $P(x>2)=\frac{9}{81}=\frac{1}{9}$
13)
a)

$$
\begin{aligned}
& P(X=x)=\frac{2}{x^{2}} \quad x=2,3,4 \\
& P(X=2)+P(X=3)+P(X=8) \\
& =\frac{2}{2^{2}}+\frac{2}{3^{2}}+\frac{2}{4^{2}} \\
& =\frac{2}{4}+\frac{2}{9}+\frac{2}{16}=\frac{61}{72} \neq 1
\end{aligned}
$$

Sum of probabilities of mutually exclusive outcomes d_{0} not sum to 1 so not a probability distribution.
b) Need to multiply all probabilities by $\frac{72}{61} \quad \frac{2\left(\frac{72}{61}\right)}{4}+\frac{2\left(\frac{72}{61}\right)}{9}+\frac{2\left(\frac{72}{61}\right)}{16}=1$

$$
\therefore k=2\left(\frac{72}{61}\right)=\frac{144}{61}
$$

3 Jeremy is a computing consultant who sometimes works at home. The number, X, of days that Jeremy works at home in any given week is modelled by the probability distribution

$$
\mathrm{P}(X=r)=\frac{1}{40} r(r+1) \quad \text { for } r=1,2,3,4 .
$$

(i) Verify that $\mathrm{P}(X=4)=\frac{1}{2}$.
(iii) Jeremy works for 45 weeks each year. Find the expected number of weeks during which he works at home for exactly 2 days.

$$
\begin{aligned}
P(x=4) & =\frac{1}{40} \times 4 \times(4+1) \\
& =\frac{1}{40} \times 4 \times 5=\frac{20}{40}=\frac{1}{2}
\end{aligned}
$$

ic)

$$
\begin{aligned}
P(x=2) & =\frac{1}{40} \times 2 \times(2+1) \\
& =\frac{6}{40}=\frac{3}{20} \\
& =45 \times \frac{3}{20} \\
& =6.75 \text { weeks }
\end{aligned}
$$

2 Four letters are taken out of their envelopes for signing. Unfortunately they are replaced randomly, one in each envelope.

The probability distribution for the number of letters, X, which are now in the correct envelope is given in the following table.

r	0	1	2	3	4
$\mathrm{P}(X=r)$	$\frac{3}{8}$	$\frac{1}{3}$	$\frac{1}{4}$	0	$\frac{1}{24}$

(i) Explain why the case $X=3$ is impossible.
(ii) Explain why $\mathrm{P}(X=4)=\frac{1}{24}$.
(iii)
i) If 3 are correct so is the fourth.

$$
\begin{gathered}
\text { Right Right Right Right } \\
P(4 \text { right })=\frac{1}{4} \times \frac{1}{3} \times \frac{1}{2} \times 1=\frac{1}{24}
\end{gathered}
$$

