Angle Between Two Vectors

$$
\begin{aligned}
& A\left(a_{1} a_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \cos \theta=\frac{\left(\sqrt{a_{1}{ }^{2}+a_{2}^{2}}\right)^{2}+\left(\sqrt{b_{1}{ }^{2}+b_{2}{ }^{2}}\right)^{2}-\left(\sqrt{\left(b_{1}-a_{1}\right)^{2}+\left(b_{2}-a_{2}\right)^{2}}\right)^{2}}{2|\overrightarrow{O A}||\overrightarrow{O B}|}
\end{aligned}
$$

$$
\begin{aligned}
& \cos \theta=\frac{2 a_{1} b_{1}+2 a_{2} b_{2}}{2|\underline{a}||\underline{b}|}=\frac{a_{1} b_{1}+a_{2} b_{2}}{|\underline{a}||\underline{b}|}
\end{aligned}
$$

Aside
$\underline{a} \cdot \underline{b}$ is called the scalar product of $\underline{a}$ and $b$ (or the dot product)
$\underline{a} \times \underline{b}$ is called the vector product of $\underline{a}$ and $\underline{b}$ (or the cross product)
$\underline{a} \cdot \underline{b}=|\underline{a}||\underline{b}| \cos \theta$
$\underline{a} \times \underline{b}=|\underline{a}||\underline{b}| \sin \theta \dot{j} \quad$ where $f$ is a unit
vector $l$ to $a$ and $b$

In 2 dimensions $\underline{a} \cdot \underline{b}=a_{1} b_{1}+a_{2} b_{2}$
In 3 dimensions $\underline{a} \cdot \underline{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$
Examples if $\underline{a}=\binom{2}{3} \quad \underline{b}=\binom{-1}{4}$

$$
\begin{aligned}
& \underline{a} \cdot \underline{b}=2 \times-1+3 \times 4=10 \\
& \text { if } \begin{aligned}
\underline{a} & =\left(\begin{array}{l}
3 \\
4 \\
5
\end{array}\right) \text { and } \underline{b}=\left(\begin{array}{c}
2 \\
-3 \\
6
\end{array}\right) \\
\underline{a} \cdot \underline{b} & =3 \times 2+4(-3)+5 \times 6 \\
& =6-12+30 \\
& =24 \\
\cos \theta & =\frac{\underline{a} \cdot \underline{b}}{|\underline{a}||\underline{b}|}
\end{aligned}
\end{aligned}
$$

Example if $\underline{a}=\binom{4}{7} \quad \underline{b}=\binom{3}{-1}$
Find the angle between $a$ and $b$

$$
\begin{aligned}
\cos \theta=\frac{\binom{4}{7} \cdot\binom{3}{-1}}{\left|\binom{4}{7}\right|\left|\binom{3}{-1}\right|} & =\frac{12-7}{\sqrt{4^{2}+7^{2}} \sqrt{3^{2}+(-1)^{2}}} \\
\cos \theta & =\frac{5}{\sqrt{65} \sqrt{10}}
\end{aligned}
$$

$$
\theta=\cos ^{-1} \frac{5}{\sqrt{600}}=78.7^{\circ}
$$

Modelling With Vectors
Exercite $11 F$
1d) $\underline{v}=(-7 \dot{f}+4 f) \mathrm{cms}^{-1}$

$$
\text { speed }=\sqrt{(-7)^{2}+4^{2}}=\sqrt{65} \mathrm{cns}^{-1}
$$

2d) $\quad \underline{V}=(-4 i-7 j) \mathrm{cns}^{-1}$ for 120 s distine $\sqrt{(-4)^{2}+(7)^{2}} \times 120=120 \sqrt{65} \mathrm{~cm}$
5) N2L $E=m a$

$$
\underline{a}=\left(5 \underline{i}+7_{j}\right) m s^{-2} \quad \text { or }\binom{s}{l} m s^{-2}
$$



$$
\sin \theta=\frac{7}{\sqrt{5^{2}+7^{2}}} \quad \theta=54.5^{\circ}
$$

b)

$$
\begin{aligned}
& \underline{E}=m a \\
& \binom{f_{1}}{f_{2}}=0.3\binom{5}{2} \quad \Rightarrow E=\binom{1.5}{2.1} \mathrm{~N} \\
&
\end{aligned}
$$

7) 



$$
\overrightarrow{A B}=\binom{30}{40} \quad \overrightarrow{A C}=\binom{40}{-60}
$$

a)

$$
\begin{aligned}
\overrightarrow{B C} & =\overrightarrow{B A}+\overrightarrow{A C} \\
& =\binom{-30}{-40}+\binom{40}{-60} \\
\overrightarrow{B C} & =\binom{10}{-100}
\end{aligned}
$$

b)

$$
\begin{aligned}
\cos \theta=\frac{(\overrightarrow{A B}) \cdot(\overrightarrow{A C})}{|\overrightarrow{A B}||\overrightarrow{A C}|} & =\frac{30 \times 40+40(-60)}{\sqrt{30^{2}+40^{2}} \sqrt{40^{2}+(-60)^{2}}} \\
& =\frac{-1200}{50 \times 20 \sqrt{13}} \\
\theta & =\cos ^{-1}\left(\frac{-1200}{1000 \sqrt{13}}\right) \\
\theta & =109.4^{\circ}
\end{aligned}
$$

c)

$$
\begin{aligned}
\text { Aren } & =\frac{1}{2} b \sin < \\
& =\frac{1}{2}|\overrightarrow{A B}||\overrightarrow{A C}| \sin 109.44^{\circ} \\
& =\frac{1}{2} \times 50 \times 20 \sqrt{13} \times \sin 109.44^{\circ} \\
& =1700.000365 \\
& =1700 \mathrm{~m}^{2}
\end{aligned}
$$

Hok $Q 1 a Q 2 a, Q 3 a, Q 4, Q 6, Q 8$

