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Harder Differentiation Modelling Solutions
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Figure 3

2x metres

»y metres

Figure 3 shows the plan of a stage in the shape of a rectangle joined to a semicircle. The
length of the rectangular part is 2x metres and the width is y metres. The diameter of the
semicircular part is 2x metres. The perimeter of the stage is 80 m.

(a) Show that the area, 4 m?, of the stage is given by

A=80x—(2+%]x2.

C))
(b) Use calculus to find the value of x at which 4 has a stationary value.
“)
(c) Prove that the value of x you found in part (b) gives the maximum value of A.
2
(d) Calculate, to the nearest m?, the maximum area of the stage.
2T X @)
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N </
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8. A diesel lorry is driven from Birmingham to Bury at a steady speed of v kilometres per
hour. The total cost of the journey, £C, is given by
Co 1400 N 2v .
v 7
(a) Find the value of v for which C is a minimum.
)
. d’C . . . .
(b) Find & and hence verify that C is a minimum for this value of v.
v
2)
(c) Calculate the minimum total cost of the journey.
| (2)
C = Voo vy + 2V
2) 7
-2
Al —  —\hooy T 4 2
AV 4
Min wlea JAC _ 4 = —l400 + 2 =0
AV vE 7
4006 2
-— —
AV 1
A
G800 = 2V
- z
A4co =V
J 490 =
26 = V
Y = 10 Knm / h
2 - 3
A°C 2800V
S =
Ay
J
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10. The volume ¥ cm? of a box, of height x cm, is given by

V=4x(5-x), 0<x<S5

. dV
(a) Find o

(b) Hence find the maximum volume of the box.

(c) Use calculus to justify that the volume that you found in part (b) is a maximum.
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8.
X
« V>
Figure 3
Figure 3 shows a flowerbed. Its shape is a quarter of a circle of radius x metres with two
equal rectangles attached to it along its radii. Each rectangle has length equal to x metres
and width equal to y metres.
Given that the area of the flowerbed is 4 m?,
(a) show that
= 16 —nx’
8x 3)
(b) Hence show that the perimeter P metres of the flowerbed is given by the equation
P= 8 +2x
x 3
(¢) Use calculus to find the minimum value of P.
)
(d) Find the width of each rectangle when the perimeter is a minimum.
Give your answer to the nearest centimetre.
(2)
™ = =
>t
2
2 j = 4 - T_%
S
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2. oC ¥ x
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9. A solid glass cylinder, which is used in an expensive laser amplifier, has a
volume of 75 & cm?.
The cost of polishing the surface area of this glass cylinder is £2 per cm? for the curved
surface area and £3 per cm? for the circular top and base areas.

Given that the radius of the cylinder is 7 cm,

(a) show that the cost of the polishing, £C, is given by

, . 300z
M

C = 6xrr
4

(b) Use calculus to find the minimum cost of the polishing, giving your answer to the
nearest pound.

©)

(c) Justify that the answer that you have obtained in part (b) is a minimum.

Q) \/ = Trfl\,\ = IS

0y

= h= IfmT _ 5
Tr(-?.. - r'l.

Curvg_a( Su/»tca.cq asrle — 2_1.—f'L\
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2 2 2
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; \" v~ / ‘ ’

C = 266 4+ bt
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Diagram not
drawn to scale

C 2 = D
Figure 4

Figure 4 shows a plan view of a sheep enclosure.

The enclosure ABCDEA, as shown in Figure 4, consists of a rectangle BCDE joined to an
equilateral triangle BFA and a sector FEA of a circle with radius x metres and centre F.

The points B, F' and E lie on a straight line with FE = x metres and 10 < x < 25

(a) Find, in m? the exact area of the sector FEA, giving your answer in terms of x, in its
simplest form.

(2)
Given that BC = y metres, where y > 0, and the area of the enclosure is 1000 m?,
(b) show that
500 «x
y = T—£(47l'+3\/§)
3
(c) Hence show that the perimeter P metres of the enclosure is given by
1000 x
P= + (47 +36-33
x 12 ( )
3)

(d) Use calculus to find the minimum value of P, giving your answer to the nearest metre.

)
(e) Justify, by further differentiation, that the value of P you have found is a minimum.
(2)
2L

Nree of Seckr = TTx
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