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Answer ALL questions. Write your answers in the spaces provided. S K,
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2. A company runs three theme parks, 4 (Aztec Adventureland), B (Babylonian Towers) and

C (Carthaginian Kingdom).

It is known that park 4 makes a profit of £30 per visitor, park B makes a profit of £26 per
visitor and park C makes a profit of £33 per visitor.

In 2017 the Aztec Adventureland park was upgraded, which took one year to carry out.
During 2017

» park 4 had only 50% of the number of visitors it had in 2016
* park B had 25% more than the number of visitors it had in 2016
» park C had 15% more than the number of visitors it had in 2016

In total 1350000 people visited the three theme parks during 2017.

The company made a total profit from the parks of £39.15 million in 2016. The profits
dropped by 1% for 2017. £ 34 IS % 0.499 = {- 38.72S85 m
Form and solve a matrix equation to find, to 2 significant figures, the number of visitors

for each of the theme parks in 2016.
(8)
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Initial line

Figure 1

Figure 1 shows a sketch for the design of a logo. The logo is defined by the polar curve
with equation

6
r=sin(€) 0<f<K6m
The inner closed section and outer closed section of the curve, shown shaded in Figure 1,
are to be coloured the same colour. The remaining section is to be left clear.

(a) Use algebraic integration to find the area of the coloured sections of the logo.
(6)

A copy of this logo is to be painted on a white wall of a building such that the total width
of the logo is 12m.

Tins of coloured paint with an advertised minimum coverage area of 30 m? are to be used
to paint the coloured sections of the logo onto the wall. Given that two coats of paint
will be needed,

(b) find the minimum number of tins of this paint that should be bought to ensure that the
coloured sections of the logo can be painted onto the wall.
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4.
ka for0<x<3
fed)= x ;—6
for3<x
x2 -4
where k is a positive constant.
The area between the curve y = f(x) and the positive x-axis is i—
Show that
k=
Ina
where a is a constant to be determined.
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Figure 2

Figure 2 shows a sketch of a shelter against a wall. The shelter consists of two
rectangular wooden boards, O4BC and BCDG, which can be modelled as parts of planes.
Board OA4BC is vertical and parallel to the wall and the ground may be assumed to be
horizontal.

The points £ and F are at the foot of the wall directly below D and G respectively.

The length OC is 0.8 m, the length OA is 3m and the board O4BC is 1.2m away from the
wall. The points D and G are 1.5m above the ground.

To model the shelter, take O as the origin, the vector i to be 1m in the direction of 0—2, the
—> —
vector j to be 1 m in the direction of OF and the vector k to be 1 m in the direction of OC.

(a) Find an equation of the plane BCDG, giving your answer in the form ren = d
(5

In order to support the roof of the shelter, one end of a pole is attached to the ground at
the centre of the rectangle OAFE and the other end to a point on the roof. Modelling the
pole as a rod,

(b) find, to the nearest mm, the shortest possible length for the pole.
3

(c) State a limitation of the assumption that the boards can be modelled as planes.
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Question 5 continued
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6.
f(x)=hk? +3x — 11 g(x)=mx*—2x>+3x -9
where k and m are real constants.
Given that
* the sum of the roots of f is equal to the product of the roots of g
g has at least one root on the imaginary axis
(a) solve completely
(i) f(x)=0
(i) g(x)=0
(N
(b) Plot the roots of f and the roots of g on a single Argand diagram.
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- 4 -1y _(3n+1 -n
9 =2 Lo 1-3n

7. (i) Prove by induction that, for ne N,

4 —1"_ 3n+l -n
9 2) L on 1-3n
(6)

(ii) Consider the statement

n*<2" forallneZ*

A student attempts to prove this statement using induction as follows.

Student’s response

Forn=1wehave 12=1and 2! =2
Since 1 < 2 the statement is true forn = 1

Suppose it is true for n = k, so &> < 2*

Line4 —| Then(k+ 12 =K +2k+1 <P+ i (since 2k + 1 < k? for ke Z*)
= 2k?
£AR (by the assumption &> < 2%)
= 2k+l

Hence the result is true forn = k£ + 1

So the result is true for » = 1 and if it is true for » = k then it is true forn =k + 1,
and hence it is true for all positive integers » by mathematical induction. /

(a) Show by a counterexample that the statement is not true.
Given that the only mathematical error in the student’s proof occurs in line 4,
(b) identify the error made in the student’s proof,

(c) hence determine for which positive integers the statement is true, explaining
your reasoning.

(i) Prove by induction that, for ne N,
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8.

%)

A large container initially contains 3 litres of pure water.
Contaminated water starts pouring into the container at a constant rate of 250 ml per minute
and you may assume the contaminant dissolves completely.

At the same time, the container is drained at a constant rate of 125ml per minute.
The water in the container is continually mixed.

The amount of contaminant in the water pouring into the container, at time ¢ minutes after
pouring began, is modelled to be (5 — ¢*)mg per litre.

Let m be the amount of contaminant, in milligrams, in the container at time # minutes
after the contaminated water begins pouring into the container.

(a) (i) Write down an expression for the total volume of water in litres in the container
at time ¢.

(ii) Hence show that the amount of contaminant in the container can be modelled by
the differential equation

dm 5 _ e—O.ll m

e 4 24 +1
C))
(b) By solving the differential equation, find an expression for the amount of
contaminant, in milligrams, in the container # minutes after the contaminated water
begins to be poured into the container.
8)
After 30 minutes, the concentration of contaminant in the water was measured as
3.79 mg per litre.
(c) Assess the model in light of this information, giving a reason for your answer.
(2)
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Question 8 continued
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