Trigonometry
Definitions

$$
\begin{array}{ll}
\sec x=\frac{1}{\cos x} & \text { for } \cos x \neq 0 \\
\operatorname{cosec} x=\frac{1}{\sin x} & \text { for } \sin x \neq 0 \\
\cot x & =\frac{1}{\tan x}
\end{array} \quad \text { for } \tan x \neq 0
$$

From As Maths

$$
\begin{array}{lrl}
\tan \theta=\frac{\sin \theta}{\cos \theta} & \sin ^{2} \theta+\cos ^{2} \theta & =1 \quad \text { for all } \theta \\
\div \sin ^{2} \theta & \frac{\sin ^{2} \theta+\cos ^{2} \theta}{}=1 \\
\sin ^{2} \theta & =\frac{\cos ^{2} \theta}{\sin ^{2} \theta}=\frac{1}{\sin ^{2} \theta} \\
\frac{1}{\div \cos ^{2} \theta} & \frac{\cot ^{2} \theta}{}=\operatorname{cosec}^{2} \theta \\
\cos ^{2} \theta+\sin ^{2} \theta & =1 \\
\cos ^{2} \theta & \cos ^{2} \theta & \frac{\sin ^{2} \theta}{\cos ^{2} \theta}=\frac{1}{\cos ^{2} \theta}
\end{array}
$$

$$
1+\tan ^{2} \theta=\sec ^{2} \theta
$$

Two new results to be memorised

$$
\begin{aligned}
& 1+\tan ^{2} \theta=\sec ^{2} \theta \\
& 1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta
\end{aligned}
$$

Exerciie 6 A
14)

$$
\begin{aligned}
\sec 300^{\circ}=\frac{1}{\cos 300^{\circ}} & =\frac{\text { tue }}{+0 e} \\
& =\text { tre }
\end{aligned}
$$

1d) $\cot 200^{\circ}=\frac{1}{\tan 200}=\frac{+v e}{+r e}=+v e$

2a) $\sec 100^{\circ}=\frac{1}{\cos 100^{\circ}}=-5.76$
2d) $\cot 550^{\circ}=\frac{1}{\tan 550^{\circ}}=5.67$
29) $\quad \operatorname{cosec} \frac{11 \pi}{10}=\frac{1}{\sin 1 \frac{11}{10}}=-3.24$
30) $\operatorname{cosec} 90^{\circ}=\frac{1}{\sin 90^{\circ}}=\frac{1}{1}=1$
$3 d) \sec 240^{\circ}=\frac{1}{\cos 240^{\circ}}$

$3 y \sec 60^{\circ}=\frac{1}{\cos 60^{\circ}}=\frac{1}{\frac{1}{2}}=2$
Sj) $\cot \frac{4 \pi}{3}=\frac{1}{\tan \frac{4 \pi}{3}}=\frac{1}{\sqrt{3}}$

Classwork - Complete Exercise 6A

Graphs of $y=\sin x, \operatorname{cosec} x$

Graphs of $y=\cos x, \sec x$

Graphs of $y=\tan x, \cot x$

Domains and Ranges

$$
y=\sin x \quad \text { Domain } \quad x \in \mathbb{R}
$$

Range $-1 \leq y \leq 1$

$$
\begin{array}{ll}
y=\cos x & \text { Domain } \quad x \in \mathbb{R} \\
& \text { Range }-1 \leq y \leq 1 \\
y=\tan x \quad & \text { Domain }\left\{x \in \mathbb{R}: x \neq \frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}\right\} \\
& \text { Range } \quad y \in \mathbb{R} \\
y=\operatorname{cosec} x \quad & \text { Domain }\{x \in \mathbb{R}: x \neq \pm \pi ; 2 \pi \pm 3 \pi, \ldots\} \\
& \text { Range }\{y \geqslant 1\} \cup\{y \leq-1\} \\
y=\sec x & \text { Domain }\left\{x \in \mathbb{R}: x \neq \pm \frac{\pi}{2} \pm \frac{3 \pi}{2}\right. \\
& \\
& \text { Range }\{y \geqslant 1\} \cup\{y \leq-1\} \\
& \\
& \text { Domain }\left\{x \in \mathbb{R}: \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \pm \frac{5 \pi}{2}, \ldots\right\} \\
y=\cot x & \text { Range }\{y \in \mathbb{R}\}
\end{array}
$$

$\exists \quad$ there exists
θ for all
: such that
\in is a member of
\subseteq is a subset of
c is a proper subset of

