The sequence of positive numbers u_1 , u_2 , u_3 , is given by:	
$u_{n+1}=(u_n-3)^2, u_1=1.$	
a) Find u_2 , u_3 and u_4 .	
	(3)
b) Write down the value of u_{20} .	
	(1)

	7
Leave	
hlank	

4. A sequence a_1, a_2, a_3, \ldots is defined by

$$a_1 = 3$$
,

$$a_{n+1}=3a_n-5, \quad n\geqslant 1.$$

(a) Find the value of a_2 and the value of a_3 .

(2)

(b) Calculate the value of $\sum_{r=1}^{5} a_r$.

(3)

Leave blank

8. A sequence $a_1, a_2, a_3,...$ is defined by

$$a_1 = k$$
,

$$a_{n+1} = 3a_n + 5, \qquad n \geqslant 1,$$

where k is a positive integer.

(a) Write down an expression for a_2 in terms of k.

(1)

(b) Show that $a_3 = 9k + 20$.

(2)

(c) (i) Find $\sum_{r=1}^{4} a_r$ in terms of k.

(ii) Show that $\sum_{r=1}^{4} a_r$ is divisible by 10.

(4)

Leave	
blank	

7.	A sequence	is	given	by:
	1 1 bequeinee	10	51,011	σ_{J} .

$$x_1 = 1$$
,

$$x_{n+1} = x_n(p + x_n),$$

where p is a constant $(p \neq 0)$.

(a) Find x_2 in terms of p.

(1)

(b) Show that $x_3 = 1 + 3p + 2p^2$.

(2)

Given that $x_3 = 1$,

(c) find the value of p,

(3)

(d) write down the value of x_{2008} .

(2)

Leave	
blank	

5.	A sequence x_1, x_2, x_3, \dots	is	defined	hv
J.	Λ sequence $\lambda_1, \lambda_2, \lambda_2, \ldots$. 15	uclincu	υy

$$x_1 = 1$$
,

$$x_{n+1} = ax_n - 3, \ n > 1,$$

where a is a constant.

(a) Find an expression for x_2 in terms of a.

(1)

(b) Show that $x_3 = a^2 - 3a - 3$.

(2)

Given that $x_3 = 7$,

(c) find the possible values of a.

(3)

 	 	 	 _
 	 		 _

7. A sequence a_1, a_2, a_3, \dots is defined by

$$a_1 = k$$
,

$$a_{n+1}=2a_n-7, \qquad n\geqslant 1,$$

where k is a constant.

(a) Write down an expression for a_2 in terms of k.

(1)

(b) Show that $a_3 = 4k - 21$.

(2)

Given that $\sum_{r=1}^{4} a_r = 43$,

(c) find the value of k.

(4)

Leave	
blank	

5.	A sequence	of	positive	numbers	is	defined	by

$$a_{n+1} = \sqrt{(a_n^2 + 3)}, \quad n \ge 1,$$

 $a_1 = 2$

(a) Find a_2 and a_3 , leav	. .	•	1	C
(a) Find a and a leav	ing valir answers	ın	SHIPA	torm
(a) 1 111 a a_2 and a_2 , rear	ing your answers	111	bulu	101111

(2)

(b)	Show	that	a-	=	4
(0)	2110 11	unu	CV 5	_	•

(0) 2000 11 2000 213	(2)

8