

- Year 11, 2019 - CHS Higher 3 Year MH Newest

Congruence and similarity

G	5	Use the basic congruence criteria for triangles (SSS, SAS, ASA, RHS)	
G	6	Apply angle facts, triangle congruence, similarity and properties of quadrilaterals to conjecture and derive results about angles and sides including the base angles of an isosceles triangle are equal, and use known results to obtain simple proofs	
G	19	Apply and use the concepts of congruence and similarity, including the relationships between lengths, areas and volumes in similar figures	Similar lengths, areas and volumes

Direct and inverse proportion

R10	Solve problems involving direct and inverse proportion, including graphical and algebraic representations	Recap on work done in year 10
R13	Understand that x is inversely proportional to $\frac{y}{y}$ is equivalent to x is proportional to $\frac{1}{y}$	
	Construct and interpret equations that describe direct and inverse proportion	
R14	Recognise and interpret graphs that illustrate direct and inverse proportion	

Algebra: further quadratics, rearranging formulae and identities – <mark>the main part of this is all about solving quadratics,</mark> by factorising, using the formula, CTS and with plenty of problem solving

This section also includes PROOF

A4	Simplify and manipulate algebraic expressions (including those involving surds) by:	A lot of this section is a review of
	expanding products of two or more binomials	learning completed in Years 9 and
	factorising quadratic expressions of the form $x^2 + bx + c$ including the difference of two squares	<mark>10</mark>
	factorising quadratic expressions of the form $x^2 + bx + c$	
	simplifying expressions involving sums, products and powers, including the laws of indices	
A5	Understand and use standard mathematical formulae	including use of formulae from other
	Rearrange formulae to change the subject	subjects in words and using symbols
A6	Know the difference between an equation and an identity	Plenty of work with odds and evens
	Argue mathematically to show algebraic expressions are equivalent, and use algebra to support and	
	construct arguments and proofs	

A17	Solve linear equations in one unknown algebraically including those with the unknown on both sides of	including use of brackets
	the equation	
	Find approximate solutions using a graph	
A18	Solve quadratic equations (including those that require rearrangement) algebraically by factorising, by	
	completing the square and by using the quadratic formula	
	Find approximate solutions using a graph	

A11	Identify and interpret roots, intercepts and turning points of quadratic functions graphically; deduce roots algebraically and turning points by completing the square	including the symmetrical property of a quadratic
A21	Translate simple situations or procedures into algebraic expressions or formulae derive an equation, solve the equation and interpret the solution	including solution of geometrical problems and problems set in context

A22	Solve linear inequalities in one or two variables and quadratic inequalities in one variable; represent the	
	solution set on a number line, using set notation and on a graph	

Algebraic fractions

A4	Simplify and manipulate algebraic expressions involving algebraic fractions	Add, subtract, multiply and
		divide, use in solving
		equations both linear and
		quadratic and in simplifying
		fractions by factorising

Circle theorems

G10	Apply and prove the standard circle theorems concerning	including
	angles, radii, tangents and chords and use them to prove	 angle at centre is equal to twice angle at circumference;
	related results	• angle in a semi-circle is 90°;
		 angles in the same segment are equal;
		 opposite angles in a cyclic quadrilateral sum to 180°;
		• tangent at any point on a circle is perpendicular to the radius at that point
		 tangents from an external point are equal in length;
		 the perpendicular from the centre to a chord bisects the chord;
		alternate segment theorem
		-

Functions – composite and inverse

A	\7	Where appropriate, interpret simple expressions as functions with inputs and outputs	understand and use function
		Interpret the reverse process as the 'inverse function'	notation: $f(x)f(x)$, $fg(x)fg(x)$, $f-1(x)f-$
		Interpret the succession of two functions as a 'composite function'	1(x) is expected at higher tier

Numerical methods - Iteration

A20	Find approximate solutions to equations numerically using iteration	including the use of suffix notation in recursive formulae
-----	---	--

Sine and cosine rules

G22	$\frac{a}{b} = \frac{b}{c}$	
	Know and apply the Sine rule $\sin A \sin B \sin C$	
	and Cosine rule $a^2 = b^2 + c^2 - 2bc \cos A$ to find unknown lengths and angles	
G23	$=\frac{1}{-abs}\sin C$	
	Know and apply 2 to calculate the area, sides or angles of any triangle	

Vectors

G25	Apply addition and subtraction of vectors, multiplication of vectors by a scalar, and diagrammatic and column	
	representation of vectors	
	Use vectors to construct geometric arguments and proofs	

Gradients and rate of change

R15	Interpret the gradient at a point on a curve as the instantaneous rate of change	
	Apply the concepts of average and instantaneous rates of change (gradients of chords and	
	tangents) in numerical, algebraic and graphical contexts	

R14	Interpret the gradient of a straight-line graph as a rate of change	
-----	---	--

Pre-calculus and area under a curve

A15	Calculate or estimate gradients of graphs and areas under graphs (including quadratic and other non-linear	
	graphs)	
	Interpret the results in cases such as distance-time graphs, velocity-time graphs and graphs in financial contexts	

Trigonometric graphs

A12	Recognise, sketch and interpret the trigonometric functions (with arguments in degrees) $y = \sin x$, $y = \cos x$ and $y = \tan x$ for angles of any size	
A12	Recognise, sketch and interpret graphs of linear functions, quadratic functions, <u>simple cubic functions and the reciprocal</u> $y = \frac{1}{x}$ with $x \neq 0$, exponential functions $y = kx$ for positive values of k	A review of graph work covered earlier in the SOW

Transforming functions

A	13	Sketch translations and reflections of a given function	

Equation of a circle

A	16	Recognise and use the equation of a circle with centre at the origin	A really good time to
		Find the equation of a tangent to a circle at a given point.	revise all straight line
			<mark>coordinate geometry</mark>

A9	Use the form <u>y=mx+c</u> to identify parallel lines and perpendicular lines Find the equation of the line through two given points, or through one point with a given gradient	This stuff
A10	Identify and interpret gradients and intercepts of linear functions graphically and algebraically	

REVISION

Teacher choice – what needs to be gone back over/re-taught. Issues from mocks, lowlights from pinpoint learning etc.