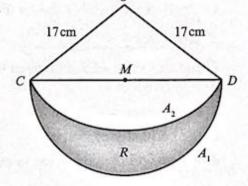
Radians Mixed Exercise

Mixed exercise 5

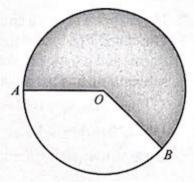

- P 1 Triangle ABC is such that AB = 5 cm, AC = 10 cm and $\angle ABC = 90^{\circ}$. An arc of a circle, centre A and radius 5 cm, cuts AC at D.
 - a State, in radians, the value of $\angle BAC$.
 - b Calculate the area of the region enclosed by BC, DC and the arc BD.
- 2 The diagram shows the triangle OCD with OC = OD = 17 cm and CD = 30 cm. The midpoint of CD is M. A semicircular arc A_1 , with centre M is drawn, with CD as diameter. A circular arc A_2 with centre O and radius 17 cm, is drawn from C to D. The shaded region R is bounded by the arcs A_1 and A_2 . Calculate, giving answers to 2 decimal places:

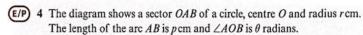
a the area of the triangle OCD

(4 marks)

b the area of the shaded region R.

(5 marks)




- EP 3 The diagram shows a circle, centre O, of radius 6 cm. The points A and B are on the circumference of the circle. The area of the shaded major sector is 80 cm^2 . Given that $\angle AOB = \theta$ radians, where $0 < \theta < \pi$, calculate:
 - a the value, to 3 decimal places, of θ

(3 marks)

b the length in cm, to 2 decimal places, of the minor arc AB.

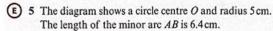
(2 marks)

a Find θ in terms of p and r.

(2 marks)

b Deduce that the area of the sector is $\frac{1}{2}pr$ cm².

(2 marks)

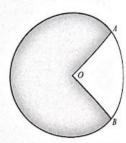

Given that r = 4.7 and p = 5.3, where each has been measured to 1 decimal place, find, giving your answer to 3 decimal places:

c the least possible value of the area of the sector

(2 marks)

d the range of possible values of θ .

(3 marks)

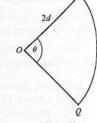

a Calculate, in radians, the size of the acute angle AOB. (2 marks) The area of the minor sector AOB is R1 cm2 and the area of the shaded major sector is R_2 cm².

b Calculate the value of R_1 .

(2 marks)

c Calculate $R_1: R_2$ in the form 1:p, giving the value of p to 3 significant figures.

(3 marks)



E/P) 6 The diagrams show the cross-sections of two drawer handles. Shape X is a rectangle ABCD joined to a semicircle with BC as diameter. The length AB = dcm and BC = 2dcm. Shape Y is a sector OPQ of a circle with centre O and radius 2dcm. Angle POQ is θ radians.

Given that the areas of shapes X and Y are equal,

a prove that
$$\theta = 1 + \frac{\pi}{4}$$

(5 marks)

Shape X

Shape Y

Using this value of θ , and given that d = 3, find in terms of π :

b the perimeter of shape X

(3 marks)

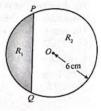
c the perimeter of shape Y.

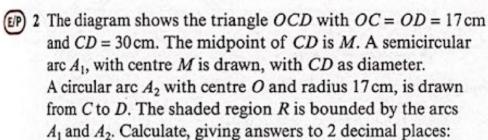
(3 marks)

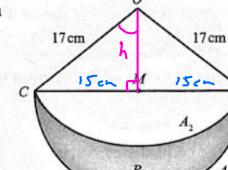
d Hence find the difference, in mm, between the perimeters of shapes X and Y.

(1 mark)

(E/P) 7 The diagram shows a circle centre O and radius 6 cm. The chord PQ divides the circle into a minor segment R_1 of area A_1 cm² and a major segment R_2 of area A_2 cm². The chord PQsubtends an angle θ radians at O.


a Show that $A_1 = 18(\theta - \sin \theta)$.


(2 marks)


Given that $A_2 = 3A_1$,

b show that $\sin \theta = \theta - \frac{\pi}{2}$

(4 marks)

= 312.3625

(4 marks)

b the area of the shaded region R.

(5 marks)

a) By Pythegoras
$$h^2 + 15^2 = 17^2$$
 $h^2 = 17^2 - 15^2$
 $h^2 = 289 - 225 = 64$
 $h = 564$
 $h = 8cm$

Area of $\triangle OCD = \frac{1}{2}$ base \times height

b)
$$R = Semi-(mle onCD - Segment onCD)$$

$$= \frac{TT \times 15^{2}}{2} - (Sector - \Delta)$$

$$= Sin^{-1} \frac{15}{17} = 1.08$$

$$= L con = 1.08 \times 2 = 2.161678$$
Area of Sector = $\frac{1}{2}$ ²0 = $\frac{1}{2}$ × $\frac{1}{2}$. ICIGTS

$$R = \frac{\pi \times 15^{2}}{2} - (312.3625 - 128)$$

$$R = 161 \text{ cm}^{2}$$

- E/P
- 4 The diagram shows a sector OAB of a circle, centre O and radius r cm. The length of the arc AB is p cm and $\angle AOB$ is θ radians.
 - a Find θ in terms of p and r.

(2 marks)

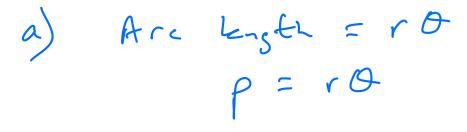
rcm

rcm

pan

b Deduce that the area of the sector is $\frac{1}{2}pr$ cm².

c the least possible value of the area of the sector


(2 marks)

Given that r = 4.7 and p = 5.3, where each has been measured to 1 decimal place, find, giving your answer to 3 decimal places:

(2 marks)

d the range of possible values of θ .

(3 marks)

b)
$$Arca = \frac{1}{2}r^20$$

 $= \frac{1}{2}r(r0)$
 $= \frac{1}{2}r\rho cm^2$

d) From (a)
$$O = f$$

$$Max D = \frac{p_{max}}{r_{min}} = \frac{5.35}{4.65}$$

$$\frac{\text{Min O}}{\text{V}_{\text{max}}} = \frac{5.25}{4.75}$$

1.105 radius < 0 < 1.151 radions