(6)

(3)

Leave blank

4.

Figure 2

The curve shown in Figure 2 has parametric equations

$$x = \sin t$$
, $y = \sin (t + \frac{\pi}{6})$, $-\frac{\pi}{2} < t < \frac{\pi}{2}$.

- (a) Find an equation of the tangent to the curve at the point where $t = \frac{\pi}{6}$.
- (b) Show that a cartesian equation of the curve is

$$y = \frac{\sqrt{3}}{2}x + \frac{1}{2}\sqrt{(1-x^2)}, \quad -1 < x < 1.$$

Mark Scheme 2 Pages Further On

Question Number	Scheme		Marks
4. (a)	$x = \sin t$, $y = \sin(t + \frac{\pi}{6})$		
	$\frac{dx}{dt} = \cos t$, $\frac{dy}{dt} = \cos\left(t + \frac{\pi}{6}\right)$	Attempt to differentiate both x and y wrt t to give two terms in cos	M1
	dt dt dt	Correct $\frac{dx}{dt}$ and $\frac{dy}{dt}$	A1
	When $t = \frac{\pi}{6}$, $\frac{dy}{dx} = \frac{\cos(\frac{\pi}{6} + \frac{\pi}{6})}{\cos(\frac{\pi}{6})} = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}} = \text{awrt } 0.58$	Divides in correct way and substitutes for t to give any of the four underlined oe: Ignore the double negative if candidate has differentiated $\sin \rightarrow -\cos$	A1
	When $t = \frac{\pi}{6}$, $x = \frac{1}{2}$, $y = \frac{\sqrt{3}}{2}$	The point $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ or $\left(\frac{1}{2}, \text{ awrt } 0.87\right)$	B1
	T : $y - \frac{\sqrt{3}}{2} = \frac{1}{\sqrt{3}} (x - \frac{1}{2})$	Finding an equation of a tangent with their point and their tangent gradient or finds c and uses y = (their gradient)x + "c". Correct EXACT equation of tangent oe.	dM1 <u>A1</u> oe
	or $\frac{\sqrt{3}}{2} = \frac{1}{\sqrt{3}} \left(\frac{1}{2} \right) + C \implies C = \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{6} = \frac{\sqrt{3}}{3}$		
	or T: $\left[y = \frac{\sqrt{3}}{3} x + \frac{\sqrt{3}}{3} \right]$		[6]
(b)	$y = sin(t + \frac{\pi}{6}) = sint cos \frac{\pi}{6} + cost sin \frac{\pi}{6}$	Use of compound angle formula for sine.	M1
	Nb: $\sin^2 t + \cos^2 t \equiv 1 \implies \cos^2 t \equiv 1 - \sin^2 t$		
	$\therefore x = \sin t \text{ gives } \cos t = \sqrt{(1-x^2)}$	Use of trig identity to find cost in terms of x or $\cos^2 t$ in terms of x.	M1
	$\therefore y = \frac{\sqrt{3}}{2} \sin t + \frac{1}{2} \cos t$		
	gives $y = \frac{\sqrt{3}}{2}x + \frac{1}{2}\sqrt{(1-x^2)}$ AG	Substitutes for sint, $\cos\frac{\pi}{6}$, cost and $\sin\frac{\pi}{6}$ to give y in terms of x.	A1 cso
			9 marks

Question Number	Scheme	Marks
Aliter 4. (a) Way 2	$x=\sin t, \qquad y=\sin \left(t+\tfrac{\pi}{6}\right)=\sin t\cos \tfrac{\pi}{6}+\cos t\sin \tfrac{\pi}{6} \qquad \qquad \text{(Do not give this for part (b))}$ Attempt to differentiate x and y wrt t to give $\tfrac{dx}{dt}$ in terms of cos and $\tfrac{dy}{dt}$ in the form $\pm a\cos t\pmb\sin t$	M1
	$\frac{dx}{dt} = \cos t , \frac{dy}{dt} = \cos t \cos \tfrac{\pi}{6} - \sin t \sin \tfrac{\pi}{6}$ Correct $\tfrac{dx}{dt}$ and $\tfrac{dy}{dt}$	A1
	When $t = \frac{\pi}{6}$, $\frac{dy}{dx} = \frac{\cos\frac{\pi}{6}\cos\frac{\pi}{6} - \sin\frac{\pi}{6}\sin\frac{\pi}{6}}{\cos\left(\frac{\pi}{6}\right)}$ Divides in correct way and substitutes for t to give any of the four underlined oe:	A1
	When $t = \frac{\pi}{6}$, $x = \frac{1}{2}$, $y = \frac{\sqrt{3}}{2}$ The point $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ or $\left(\frac{1}{2}, \text{ awrt } 0.87\right)$	B1
	T: $y - \frac{\sqrt{3}}{2} = \frac{1}{\sqrt{3}}(x - \frac{1}{2})$ Finding an equation of a tangent with their point and their tangent gradient or finds c and uses $y = (\text{their gradient})x + \text{"c"}$. Correct EXACT equation of tangent oe.	dM1 <u>A1</u> oe
	or $\frac{\sqrt{3}}{2} = \frac{1}{\sqrt{3}} \left(\frac{1}{2} \right) + c \implies c = \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{6} = \frac{\sqrt{3}}{3}$	
	or T: $\left[\underline{y = \frac{\sqrt{3}}{3}x + \frac{\sqrt{3}}{3}}\right]$	[6]

Question Number	Scheme		Marks
Aliter			
4. (a)	$y = \frac{\sqrt{3}}{2}x + \frac{1}{2}\sqrt{(1-x^2)}$		
Way 3	$\frac{dy}{dx} = \frac{\sqrt{3}}{2} + \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) \left(1 - x^2\right)^{-\frac{1}{2}} \left(-2x\right)$	Attempt to differentiate two terms using the chain rule for the second term. Correct dy/dx	M1 A1
	$\frac{dy}{dx} = \frac{\sqrt{3}}{2} + \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) \left(1 - (0.5)^2\right)^{-\frac{1}{2}} \left(-2(0.5)\right) = \frac{1}{\sqrt{3}}$	Correct substitution of $x = \frac{1}{2}$ into a correct $\frac{dy}{dx}$	A1
	When $t = \frac{\pi}{6}$, $x = \frac{1}{2}$, $y = \frac{\sqrt{3}}{2}$	The point $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ or $\left(\frac{1}{2}, \text{ awrt } 0.87\right)$	B1
	T : $y - \frac{\sqrt{3}}{2} = \frac{1}{\sqrt{3}} (x - \frac{1}{2})$	Finding an equation of a tangent with their point and their tangent gradient or finds c and uses y = (their gradient)x + "c". Correct EXACT equation of tangent oe.	dM1 <u>A1</u> oe
	or $\frac{\sqrt{3}}{2} = \frac{1}{\sqrt{3}} (\frac{1}{2}) + C \implies C = \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{6} = \frac{\sqrt{3}}{3}$		
Aliter	or T : $\left[\underline{y = \frac{\sqrt{3}}{3} x + \frac{\sqrt{3}}{3}} \right]$		[6]
4. (b) Way 2	$x = \sin t$ gives $y = \frac{\sqrt{3}}{2} \sin t + \frac{1}{2} \sqrt{\left(1 - \sin^2 t\right)}$	Substitutes $x = \sin t$ into the equation give in y.	M1
114, 2	Nb: $\sin^2 t + \cos^2 t \equiv 1 \implies \cos^2 t \equiv 1 - \sin^2 t$		
	$\cos t = \sqrt{\left(1 - \sin^2 t\right)}$	Use of trig identity to deduce that $cost = \sqrt{\left(1-sin^2t\right)} .$	M1
	gives $y = \frac{\sqrt{3}}{2} \sin t + \frac{1}{2} \cos t$		
	Hence $y = \sin t \cos \frac{\pi}{6} + \cos t \sin \frac{\pi}{6} = \sin(t + \frac{\pi}{6})$	Using the compound angle formula to prove $y = \sin(t + \frac{\pi}{6})$	A1 cso [3]
			9 marks