$\begin{array}{lll} \text { 8(i) } & \text { A: } & 1+\ln x=0 \\ \Rightarrow & & \ln x=-1 \text { so A is }\left(\mathrm{e}^{-1}, 0\right) \\ \Rightarrow & & x=\mathrm{e}^{-1} \end{array}$ B: $x=0, y=\mathrm{e}^{0-1}=\mathrm{e}^{-1}$ so B is $\left(0, \mathrm{e}^{-1}\right)$ $\begin{aligned} \mathrm{C}: \mathrm{f}(1) & =\mathrm{e}^{1-1}=\mathrm{e}^{0}=1 \\ \mathrm{~g}(1) & =1+\ln 1=1 \end{aligned}$	M1 A1 B1 E1 E1 [5]	SC1 if obtained using symmetry condone use of symmetry Penalise $A=e^{-1}, B=e^{-1}$, or co-ords wrong way round, but condone labelling errors.
(ii) Either by invertion: $\begin{array}{cl} \text { e.g. } & y=\mathrm{e}^{x-1} \quad x \leftrightarrow y \\ & x=\mathrm{e}^{y-1} \\ \Rightarrow & \ln x=y-1 \\ \Rightarrow & 1+\ln x=y \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { E1 } \end{aligned}$	taking lns or exps
or by composing $\text { e.g. } \quad \begin{aligned} \mathrm{fg}(x) & =\mathrm{f}(1+\ln x) \\ & =\mathrm{e}^{1+\ln x-1} \\ & =\mathrm{e}^{\ln x}=x \end{aligned}$	M1 E1 [2]	$\mathrm{e}^{1+\ln x-1}$ or $1+\ln \left(\mathrm{e}^{x-1}\right)$
$\text { (iii) } \quad \begin{aligned} \int_{0}^{1} e^{x-1} d x & =\left[e^{x-1}\right]_{0}^{1} \\ & =\mathrm{e}^{0}-\mathrm{e}^{-1} \\ & =1-\mathrm{e}^{-1} \end{aligned}$	M1 M1 A1cao [3]	$\left[e^{x-1}\right]$ o.e or $u=x-1 \Rightarrow\left[e^{u}\right]$ substituting correct limits for x or u o.e. not e^{0}, must be exact.
$\begin{aligned} & \text { (iv) } \begin{aligned} & \int \ln x d x=\int \ln x \frac{d}{d x}(x) d x \\ &= x \ln x-\int x \cdot \frac{1}{x} d x \\ &= x \ln x-x+c \\ & \Rightarrow \quad \int_{e^{-1}}^{1} \mathrm{~g}(x) d x=\int_{e^{-1}}^{1}(1+\ln x) d x \\ &=[x+x \ln x-x]_{e^{-1}}^{1} \\ &=[x \ln x)]_{e^{-1}}^{1} \\ &=1 \ln 1-\mathrm{e}^{-1} \ln \left(\mathrm{e}^{-1}\right) \\ &=\mathrm{e}^{-1} * \end{aligned} \end{aligned}$	M1 A1 Alcao B1ft DM1 E1 [6]	parts: $u=\ln x, \mathrm{~d} u / \mathrm{d} x=1 / x, v=x, \mathrm{~d} v / \mathrm{d} x=1$ condone no ' c ' ft their ' $x \ln x-x$ ' (provided 'algebraic') substituting limits dep B1 www
$\text { (v) } \begin{aligned} \text { Area } & =\int_{0}^{1} \mathrm{f}(x) \mathrm{d} x-\int_{\mathrm{e}^{-1}}^{1} \mathrm{~g}(x) \mathrm{d} x \\ & =\left(1-\mathrm{e}^{-1}\right)-\mathrm{e}^{-1} \\ & =1-2 / \mathrm{e} \end{aligned}$	M1 Alcao	Must have correct limits 0.264 or better.
or $\begin{aligned} \text { Area } \mathrm{OCB} & =\text { area under curve }- \text { triangle } \\ & =1-\mathrm{e}^{-1}-1 / 2 \times 1 \times 1 \\ & =1 / 2-\mathrm{e}^{-1} \end{aligned}$ or	M1 A1cao [2]	$\mathrm{OCA} \text { or } \mathrm{OCB}=1 / 2-\mathrm{e}^{-1}$ 0.264 or better

9(i) $\quad a=1 / 3$	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	or 0.33 or better
$\text { (ii) } \begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(3 x-1) 2 x-x^{2} \cdot 3}{(3 x-1)^{2}} \\ & =\frac{6 x^{2}-2 x-3 x^{2}}{(3 x-1)^{2}} \\ & =\frac{3 x^{2}-2 x}{(3 x-1)^{2}} \\ & =\frac{x(3 x-2)}{(3 x-1)^{2}} * \end{aligned}$	M1 A1 E1 [3]	quotient rule www - must show both steps; penalise missing brackets.
(iii) $\mathrm{d} y / \mathrm{d} x=0$ when $x(3 x-2)=0$ $\Rightarrow \quad x=0$ or $x=2 / 3$, so at $\mathrm{P}, x=2 / 3$ when $x=\frac{2}{3}, y=\frac{(2 / 3)^{2}}{3 \times(2 / 3)-1}=\frac{4}{9}$ when $x=0.6, \mathrm{~d} y / \mathrm{d} x=-0.1875$ when $x=0.8, \mathrm{~d} y / \mathrm{d} x=0.1633$ Gradient increasing \Rightarrow minimum	M1 A1 M1 A1cao B1 B1 E1 [7]	if denom $=0$ also then M0 o.e e.g. 0.6 , but must be exact o.e e.g. 0.4 , but must be exact $-3 / 16$, or -0.19 or better $8 / 49$ or 0.16 or better o.e. e.g. 'from negative to positive'. Allow ft on their gradients, provided -ve and +ve respectively. Accept table with indications of signs of gradient.
$\text { (iv) } \begin{aligned} & \int \frac{x^{2}}{3 x-1} d x \quad u=3 x-1 \Rightarrow d u=3 d x \\ & =\int \frac{\frac{(u+1)^{2}}{9}}{u} \frac{1}{3} d u \\ & =\frac{1}{27} \int \frac{(u+1)^{2}}{u} d u=\frac{1}{27} \int \frac{u^{2}+2 u+1}{u} d u \\ & =\frac{1}{27} \int\left(u+2+\frac{1}{u}\right) d u^{*} \end{aligned}$ $\text { Area }=\int_{2 / 3}^{1} \frac{x^{2}}{3 x-1} d x$ When $x=2 / 3, u=1$, when $x=1, u=2$ $\begin{aligned} & =\frac{1}{27} \int_{1}^{2}(u+2+1 / u) d u \\ & =\frac{1}{27}\left[\frac{1}{2} u^{2}+2 u+\ln u\right]_{1}^{2} \\ & =\frac{1}{27}\left[(2+4+\ln 2)-\left(\frac{1}{2}+2+\ln 1\right)\right] \\ & =\frac{1}{27}\left(3 \frac{1}{2}+\ln 2\right)\left[=\frac{7+2 \ln 2}{54}\right] \end{aligned}$	B1 M1 M1 E1 B1 M1 A1cao [7]	$\begin{aligned} & \frac{\frac{(u+1)^{2}}{9}}{u} \text { o.e. } \\ & \times 1 / 3(\mathrm{~d} u) \end{aligned}$ expanding Condone missing $\mathrm{d} u$'s $\left[\frac{1}{2} u^{2}+2 u+\ln u\right]$ substituting correct limits, dep integration o.e., but must evaluate $\ln 1=0$ and collect terms.

