Section B (36 marks)

7 A curve is defined by the equation y = 2x1n(1 + x).

d

(i) Find ay and hence verify that the origin is a stationary point of the curve. [4]
d2y

(ii) Find 2’ and use this to verify that the origin is a minimum point. [5]
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(iii) Using the substitution # = 1 + x, show that J‘ 1):_ dx = J‘ (u -2+ —) du.
X u
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Hence evaluate
0 1+x

dx, giving your answer in an exact form. [6]
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(iv) Using integration by parts and your answer to part (iii), evaluate J 2xIn(1 + x) dx. [4]
0
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Fig. 8 shows the curve y = f(x), where f(x) = 1 + sin 2x for —ifr <x < in.
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Fig. 8

(i) State a sequence of two transformations that would map part of the curve y = sin x onto the curve
y =f(x). [4]

(ii) Find the area of the region enclosed by the curve y = f(x), the x-axis and the line x = ifr. (4]

(iii) Find the gradient of the curve y = f(x) at the point (0, 1). Hence write down the gradient of the

curve y = f 71 (x) at the point (1, 0). [4]
(iv) State the domain of £ ' (x). Add a sketch of y = f ™! (x) to a copy of Fig. 8. [3]
(v) Find an expression for f -1 (x). [2]
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