Section B (36 marks)

7 A curve is defined by the equation $y=2 x \ln (1+x)$.
(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and hence verify that the origin is a stationary point of the curve.
(ii) Find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$, and use this to verify that the origin is a minimum point.
(iii) Using the substitution $u=1+x$, show that $\int \frac{x^{2}}{1+x} \mathrm{~d} x=\int\left(u-2+\frac{1}{u}\right) \mathrm{d} u$.

Hence evaluate $\int_{0}^{1} \frac{x^{2}}{1+x} \mathrm{~d} x$, giving your answer in an exact form.
(iv) Using integration by parts and your answer to part (iii), evaluate $\int_{0}^{1} 2 x \ln (1+x) \mathrm{d} x$.

8 Fig. 8 shows the curve $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=1+\sin 2 x$ for $-\frac{1}{4} \pi \leqslant x \leqslant \frac{1}{4} \pi$.

Fig. 8
(i) State a sequence of two transformations that would map part of the curve $y=\sin x$ onto the curve $y=\mathrm{f}(x)$.
(ii) Find the area of the region enclosed by the curve $y=\mathrm{f}(x)$, the x-axis and the line $x=\frac{1}{4} \pi$.
(iii) Find the gradient of the curve $y=\mathrm{f}(x)$ at the point $(0,1)$. Hence write down the gradient of the curve $y=\mathrm{f}^{-1}(x)$ at the point $(1,0)$.
(iv) State the domain of $\mathrm{f}^{-1}(x)$. Add a sketch of $y=\mathrm{f}^{-1}(x)$ to a copy of Fig. 8.
(v) Find an expression for $\mathrm{f}^{-1}(x)$.

