Section B (36 marks)

7 Fig. 7 shows the curve $y=\frac{x^{2}+3}{x-1}$. It has a minimum at the point P. The line l is an asymptote to the curve.

Fig. 7
(i) Write down the equation of the asymptote l.
(ii) Find the coordinates of P .
(iii) Using the substitution $u=x-1$, show that the area of the region enclosed by the x-axis, the curve and the lines $x=2$ and $x=3$ is given by

$$
\int_{1}^{2}\left(u+2+\frac{4}{u}\right) \mathrm{d} u .
$$

Evaluate this area exactly.
(iv) Another curve is defined by the equation $\mathrm{e}^{y}=\frac{x^{2}+3}{x-1}$. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y by differentiating implicitly. Hence find the gradient of this curve at the point where $x=2$.

8 Fig. 8 shows part of the curve $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=\mathrm{e}^{-\frac{1}{5} x} \sin x$, for all x.

Fig. 8
(i) Sketch the graphs of
(A) $y=\mathrm{f}(2 x)$,
(B) $y=\mathrm{f}(x+\pi)$.
(ii) Show that the x-coordinate of the turning point P satisfies the equation $\tan x=5$.

Hence find the coordinates of P .
(iii) Show that $\mathrm{f}(x+\pi)=-\mathrm{e}^{-\frac{1}{5} \pi} \mathrm{f}(x)$. Hence, using the substitution $u=x-\pi$, show that

$$
\int_{\pi}^{2 \pi} \mathrm{f}(x) \mathrm{d} x=-\mathrm{e}^{-\frac{1}{5} \pi} \int_{0}^{\pi} \mathrm{f}(u) \mathrm{d} u
$$

Interpret this result graphically. [You should not attempt to integrate $\mathrm{f}(x)$.]

