Section B (36 marks)

7 Fig. 7 shows the curve

$$
y=2 x-x \ln x \text {, where } x>0 .
$$

The curve crosses the x-axis at A, and has a turning point at B . The point C on the curve has x-coordinate 1. Lines CD and BE are drawn parallel to the y-axis.

Not to scale

Fig. 7
(i) Find the x-coordinate of A , giving your answer in terms of e .
(ii) Find the exact coordinates of B.
(iii) Show that the tangents at A and C are perpendicular to each other.
(iv) Using integration by parts, show that

$$
\int x \ln x \mathrm{~d} x=\frac{1}{2} x^{2} \ln x-\frac{1}{4} x^{2}+c .
$$

Hence find the exact area of the region enclosed by the curve, the x-axis and the lines CD and BE.

8 The function $\mathrm{f}(x)=\frac{\sin x}{2-\cos x}$ has domain $-\pi \leqslant x \leqslant \pi$.
Fig. 8 shows the graph of $y=\mathrm{f}(x)$ for $0 \leqslant x \leqslant \pi$.

Fig. 8
(i) Find $\mathrm{f}(-x)$ in terms of $\mathrm{f}(x)$. Hence sketch the graph of $y=\mathrm{f}(x)$ for the complete domain $-\pi \leqslant x \leqslant \pi$.
(ii) Show that $\mathrm{f}^{\prime}(x)=\frac{2 \cos x-1}{(2-\cos x)^{2}}$. Hence find the exact coordinates of the turning point P .

State the range of the function $\mathrm{f}(x)$, giving your answer exactly.
(iii) Using the substitution $u=2-\cos x$ or otherwise, find the exact value of $\int_{0}^{\pi} \frac{\sin x}{2-\cos x} \mathrm{~d} x$.
(iv) Sketch the graph of $y=\mathrm{f}(2 x)$.
(v) Using your answers to parts (iii) and (iv), write down the exact value of $\int_{0}^{\frac{1}{2} \pi} \frac{\sin 2 x}{2-\cos 2 x} \mathrm{~d} x$.

