Vectors
A vector quantity has both magnitude and direction A scalar quantity has only magnitude

Vectors Force, velocity, acceleration displacement

Scalars Mass, speed, distance
Vectors do have position except that we often have position vectors relative to an orgin

\[

\]

$$
\underline{a}+\underline{b}=\binom{2}{3}+\binom{1}{3}=\binom{3}{6}
$$

triangle rule, parallelogram rub, nose to tail rule

Find $\underline{a}+2 \underline{b}+3 \underline{c}$

$$
\begin{aligned}
& \binom{2}{3}+2\binom{3}{1}+3\binom{-2}{-2} \\
= & \binom{2+6-6}{3+2-6}=\binom{2}{-1}
\end{aligned}
$$

A unit vector in the x-direction is normally called i

A unit vector in the y-direction is normally called j

$$
D(-2,4)
$$

$$
\overrightarrow{O A}=\binom{3}{2} \quad \overrightarrow{O B}=\binom{3}{-3} \quad \overrightarrow{O C}=\binom{-3}{-1} \quad \overrightarrow{O D}=\binom{-2}{4}
$$

We say A has position vector $\binom{3}{2}$
We say the point (x, y) has position vector $\binom{x}{y}$

$$
\begin{aligned}
\overrightarrow{A B} & =\overrightarrow{A O}+\overrightarrow{O B} \\
& =-a+b \quad \text { or } \quad \underline{b}-a
\end{aligned}
$$

Suppose R splits P_{Q} in ratio $1: 3$

Find $\overrightarrow{O R}$

$$
\begin{aligned}
\overrightarrow{P Q} & =\overrightarrow{P_{O}}+\overrightarrow{O Q} \\
& =-f+q \\
\overrightarrow{P_{R}} & =\frac{1}{4} \overrightarrow{P Q}=\frac{1}{4}(-f+q)=-\frac{1}{4} f+\frac{1}{4} q \\
\overrightarrow{O R} & =\overrightarrow{O P}+\overrightarrow{P R} \\
& =f-\frac{1}{4} f+\frac{1}{4} q=\frac{3}{4} f+\frac{1}{4} q
\end{aligned}
$$

$$
\begin{aligned}
\overrightarrow{A E} & =\overrightarrow{A O}+\overrightarrow{O E} \\
& =-\rho+q
\end{aligned}
$$

$$
\begin{aligned}
\overrightarrow{O D} & =\overrightarrow{O A}+\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C D} \\
& =f+q-f+q-f=2 q-f
\end{aligned}
$$

$$
\begin{aligned}
\overrightarrow{O D} & =\overrightarrow{O E}+\overrightarrow{E D} \\
& =-f+q+q=2 q-e
\end{aligned}
$$

$\overrightarrow{O D}$ is independent of the actual route taken from 0 to l

Homework Read Chapter 11 Pages 230-240 without actually doing any exercises

