$$F_{i} = -3i + 7; = \begin{pmatrix} -3 \\ 7 \end{pmatrix}$$

$$F_2 = \frac{1}{2} - \frac{1}{3} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

a)
$$R = F_1 + F_2 = \begin{pmatrix} -3 \\ 7 \end{pmatrix} + \begin{pmatrix} -1 \\ -1 \end{pmatrix} = \begin{pmatrix} -2 \\ 6 \end{pmatrix} N$$

$$|R| = \sqrt{(-2)^2 + 6^2} = \sqrt{46} = 6.32 N$$

6)
$$Q = \tan^{-1}(\frac{2}{6})$$
 $Q = 18.4^{\circ}$

3)
$$V = \begin{pmatrix} 4 \\ 9 \end{pmatrix}$$
 $|Y| = \sqrt{4^2 + 9^2}$
= 9.85 hs⁻¹

S =
$$0t + 2at$$

S = $(4) \times 6 + 0 = (24) \times 6 + 0 = (54)$

Distance = $\sqrt{24^2 + 54^2} = 59.1 \text{ m}$

c) Not realistic for large t. Ball will slow down and stop due to friction, air resistance

$$K \times \frac{R}{5} = 2$$

 $8K = 10$
 $K = \frac{1}{6} = 1.25$

$$7) \qquad \overrightarrow{AB} = \begin{pmatrix} 3 \\ 5 \end{pmatrix} \qquad \overrightarrow{AC} \begin{pmatrix} 6 \\ 3 \end{pmatrix}$$

a)
$$\overrightarrow{BC} = \overrightarrow{BA} + \overrightarrow{AC}$$

= $(\frac{-3}{-5}) + (\frac{6}{3}) = (\frac{-3}{-2}) = 3\dot{c} - 2\dot{f}$

$$|AG| = \sqrt{3^{2}+5^{2}} = \sqrt{24}$$

$$|AC| = \sqrt{6^{2}+3^{2}} = \sqrt{45}$$

$$|BC| = \sqrt{3^{2}+(-2)^{2}} = \sqrt{13}$$

$$CosA = \frac{\sqrt{34^2 + \sqrt{45^2} - \sqrt{13}^2}}{2 \times \sqrt{34} \times \sqrt{45}} = \frac{66}{2\sqrt{1530}}$$

$$\cos A = \frac{33}{\sqrt{1530}} = 32.5^{\circ}$$

c) Area =
$$\frac{1}{2}bcsinA$$

= $\frac{1}{2} \times \sqrt{34} \times \sqrt{45} \sin 32.471$
= 10.5 units

Huk Mixed Exercise 11 - Even Numbers

Leave blank

8. [In this question, the unit vectors **i** and **j** are horizontal vectors due east and north respectively.]

At time t = 0, a football player kicks a ball from the point A with position vector $(2\mathbf{i} + \mathbf{j})$ m on a horizontal football field. The motion of the ball is modelled as that of a particle moving horizontally with constant velocity $(5\mathbf{i} + 8\mathbf{j})$ m s⁻¹. Find

(a) the speed of the ball,

(2)

(b) the position vector of the ball after t seconds.

(2)

The point B on the field has position vector $(10\mathbf{i} + 7\mathbf{j})$ m.

(c) Find the time when the ball is due north of *B*.

(2)

At time t = 0, another player starts running due north from B and moves with constant speed $v \text{ m s}^{-1}$. Given that he intercepts the ball,

(d) find the value of v.

(6)

(e) State one physical factor, other than air resistance, which would be needed in a refinement of the model of the ball's motion to make the model more realistic.

(1)

a)
$$Y = {5 \choose 8}$$
 $|Y| = \sqrt{5^2 + 8^2}$
= 9.43 ms⁻¹

$$S - S_0 = Ut + tat$$

$$S - S_0 = Ut + tat$$

$$S - (2) = (5)t + 0$$

$$S = (5)t + (2)$$

$$S = (5t + 2)i + (8t + 1)f$$

c) When bill North of B i component = 10

=>
$$56+2=10-2$$
 $56=8$
 $60=10-2$
 $60=10-2$
 $60=10-2$
 $60=10-2$

At
$$t = 1.6$$

 $S = 10i + (8 \times 1.6 + 1)$;
 $= 10i + 13.8 +$
Runner must travel (13.8-7) in in 1.6 s
 $6.8 + i - 1.6 + 1$

e) Consider friction