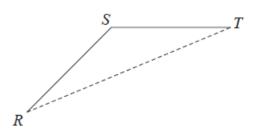

Name:	
Geometric Reasoning	
Date:	
Time:	
Total marks available:	
Total marks achieved:	

Questions

The diagram shows a regular pentagon and a parallelogram.

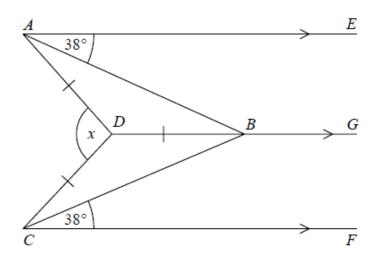


Work out the size of the angle marked x. You must show all your working.

.....

(Total for question = 4 marks)

Q2.


RS and ST are 2 sides of a regular 12-sided polygon. RT is a diagonal of the polygon.

Work out the size of angle *STR*. You must show your working.

۰

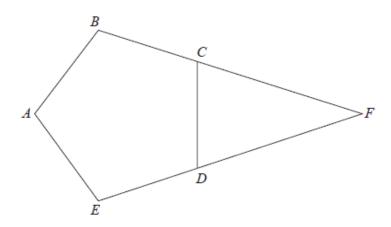
(Total for question = 3 marks)

Q3.

AE, DBG and CF are parallel.

DA = DB = DC.

Angle $EAB = angle BCF = 38^{\circ}$

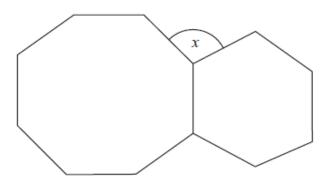

Work out the size of the angle marked x.

You must show your working.

.....

(Total for question = 3 marks)

Q4.

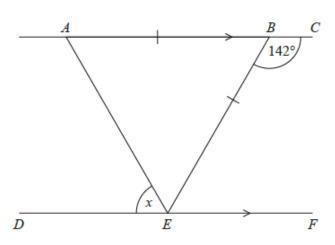

ABCDE is a regular pentagon. BCF and EDF are straight lines.

Work out the size of angle *CFD*.

You must show how you get your answer.

(Total for question = 3 marks)

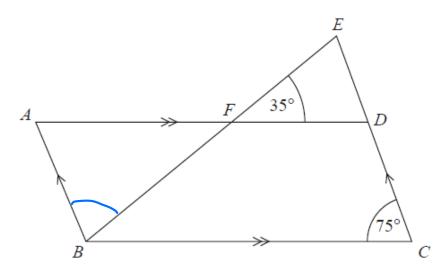
Q5.


The diagram shows a regular octagon and a regular hexagon.

Find the size of the angle marked *x* You must show all your working.

(Total for question = 3 marks)

Q6.



ABC and DEF are parallel straight lines. ABE is an isosceles triangle with AB = BE. Angle $CBE = 142^{\circ}$

Work out the size of angle x.
Give a reason for each stage in your working.

(Total for question = 5 marks)

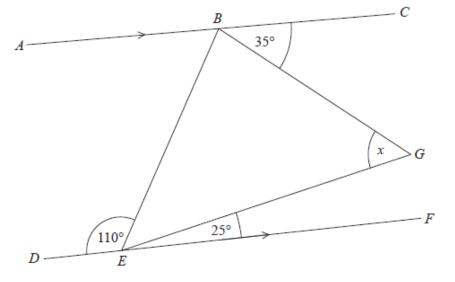
Q7.

ABCD is a parallelogram.

EDC is a straight line.

F is the point on AD so that BFE is a straight line.

Angle $EFD = 35^{\circ}$ Angle $DCB = 75^{\circ}$

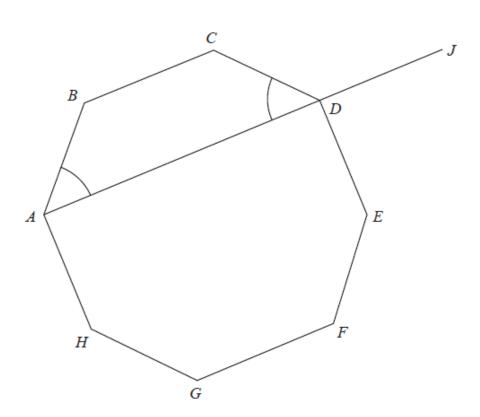

Show that angle $ABF = 70^{\circ}$

Give a reason for each stage of your working.

(Total for question = 4 marks)

Q8.

BEG is a triangle.

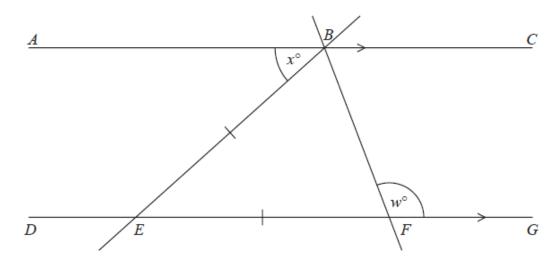

ABC and DEF are parallel lines.

Work out the size of angle x. Give a reason for each stage of your working.

.....

(Total for question = 4 marks)

Q9.


ABCDEFGH is a regular octagon. ADJ is a straight line.

angle BAD = angle CDA

Show that angle $CDJ = 135^{\circ}$

(Total for question = 4 marks)

Q10.

In the diagram ABC and DEFG are parallel lines. Angle $ABE = x^{\circ}$

EB = EF

Show that
$$w = 90 + \frac{1}{2}x$$

Give a reason for each stage of your working.

(Total for question = 4 marks)

Mark Scheme

Question	Answer	Mark	Mark scheme	Additional guidance
	45	P1	for 180 – 117 (=63)	Angles may be shown on the
			or states, or uses, exterior angle $+ x = 117$	diagram.
				Any angle labelled correctly as 63 and not contradicted scores this mark
		P1	for process to find the exterior or the interior angle of the pentagon, eg $360 \div 5 (=72)$ or $180 - (360 \div 5)$ (=108) or $((5-2) \times 180) \div 5$ (=108)	Exterior = 108 or interior =72 does not score the mark
		P1	for a complete process to find <i>x</i> , eg 180 – "72" – "63" or "108" – "63" or 117 – "72"	
		A1	cao	An answer of 45 with no supporting working scores 0

Q2.

Question	Working	Answer	Mark	Notes
		15	P1 P1 A1	for a process to find the interior or exterior angle of a regular 12 sided polygon e.g. $\frac{10 \times 180}{12}$ (= 150) or $\frac{360}{12}$ (= 30), must be no contradictions for process to find angle <i>STR</i> , eg $\frac{180 - "150"}{2}$ or $\frac{"30"}{2}$ cao

Q3.

Paper 1MA	A1: 1H			
Question	Working	Answer		Notes
		152	M1	Start to method $ABD = 38^{\circ}$ and BAD or
				DBC or $DCB = 38^{\circ}$
			M1	ADB or $BDC = 180 - 2 \times 38 (= 104)$
			A1	for 152 with working

Q	uestion	Working	Answer	Mark	Notes
			36	3	P1 a correct process to find either an interior or an exterior angle, e.g. (180 × 3) ÷ 5 (= 108) or 360 ÷ 5 (= 72)
					P1 (dep) a complete process to find angle <i>CFD</i> A1 cao

Q5.

Question	Working	Answer		Notes
		105	P1	for process to find the exterior
				angle or interior angle of a
				hexagon or octagon
			P1	for process to find the both
				exterior angles or both interior
				angles
			A1	for 105 from correct working

Q6.

Question	Working	Answer	Mark	Notes
		71°	M1	finds an angle using parallel lines, e.g. BEF as 38°
				or EAB as x.
			M1	shows a complete process to arrive at the required angle could be evidenced by angles shown on the diagram
			A1	cao
			C1	alternate, corresponding or allied (co-interior) unambiguously given and_appropriate for their working
			C1	for all other reasons given, e.g. <u>Angles</u> on a <u>straight line</u> add up to <u>180</u> , <u>Angles</u> in a <u>triangle</u> add up to <u>180</u> , <u>Base angles</u> of an <u>isosceles</u> triangle are <u>equal</u> <u>and</u> <u>appropriate</u> for their working

Question	Working	Answer	Mark	Notes
	СВ	Reasoning	B1	for 35 or 75 or 145 or 105 or $DEF = 70$,
	extended to			marked on the diagram or 3 letter
	form CG			description
			M1	for 180-70-35 or 180-75-35 or a correct
				pair of angles that would lead to 75 or 70,
				eg $AFB = 35$ and $FAB = 75$ or $AFB = 35$
				and $ABG = 75$ or $FBC = 35$ and
				ABG = 75 or $EDF = 75$ and $DEF = 70$ or
				FDC = 105 and FBC = 35 or ABC = 105
				and $FBC = 35$
			C2	(dep on B1M1) All figures correct with all
				appropriate reasons stated. Angles must be
				clearly labelled or on the diagram. Full
				solution must be seen
			(C1	(dep on B1 or M1) for one reason clearly
				used and stated.)
				Corresponding angles are equal, alternate
				angles are equal, opposite angles in a
				parallelogram are equal, angles in a triangle
				sum to 180, <u>angles</u> on a straight <u>line</u> sum to
				180, vertically opposite angles are equal,
				vertically opposite angles are equal, angles
				in a quadrilateral sum to 360, co-interior
				angles sum to 180, allied angles sum to 180,
				angles around a point sum to 360

Q8.

Question	Answer	Mark	Mark scheme	Additional guidance
	60	M1	use of parallel lines to find an angle eg $ABE=70$ or $EBG=75$ or $EBC=110$ or shows parts of x as 35 or 25	Parts of x should be identified on the diagram by the insertion of a dividing line through angle x (need not be identified or drawn parallel).
		М1	for a complete method to find angle x ; could be in working or on the diagram	Correct method can be implied from angles on the diagram if no ambiguity or contradiction.
		A1	for $x = 60$	
		C1	(dep on M1) for one reason linked to parallel lines and one other reason, supported by working taken from: <u>alternate</u> angles are equal, <u>allied</u> angles / <u>cointerior</u> angles add up to 180, <u>angles</u> on a straight <u>line</u> add up to 180, <u>angles</u> in a <u>triangle</u> add up to 180°	Underlined words need to be shown; reasons need to be linked to their method; any reasons not linked do not credit. There should be no incorrect reasons given.

Question	Working	Answer	Mark	Notes
		Correct conclusion from correct working	M1 A1 M1 C1	for a method to find the interior angle, e.g. $(8-2) \times 180 \div 8 \ (= 135)$ or exterior angle, e.g. $360 \div 8 \ (= 45)$ of a regular octagon for interior angle = 135 or exterior angle = 45 for method to find size of angle CDA , e.g. $(360-135\times 2)/2 \ (= 45)$ or for stating and using BC parallel to AD for method to complete the solution with angle $CDJ = 135$
				e.g. 180 - "45" (= 135) or angle <i>BCD</i> and angle <i>CDJ</i> are alternate angles

Q10.

Question	Working	Answer	Mark	Notes
		shown	M1	for use of parallel lines to find an angle, e.g. angle $BEF = x$
			M1	(dep M1) for second step, e.g. for angle $EBF = \frac{180 - x}{2}$ oe
				or angle $EFB = \frac{180 - x}{2}$ oe
			M1	for complete method leading to $w = 90 + \frac{1}{2}x$
			C1	for complete set of reasons linked to method: <u>Alternate</u> angles are equal
				Base angles of an <u>isosceles triangle</u> are equal, <u>Angles</u> in a <u>triangle</u> add up to 180
				Angles on a straight line add up to 180