Name: \qquad

Upper and Lower Bounds

Date:

Time:

Total marks available:

Total marks achieved: \qquad

Questions

Q1.
Sasha drops a ball from a height of d metres onto the ground.
The time, tseconds, that the ball takes to reach the ground is given by
$t=\sqrt{\frac{2 d}{g}}$
where $\mathrm{gm} / \mathrm{s}^{2}$ is the acceleration due to gravity.
$d=35.6$ correct to 3 significant figures.
$g=9.8$ correct to 2 significant figures.
(a) Write down the lower bound of d.
(b) Calculate the lower bound of t. You must show all your working.

Q2.
Jarek uses the formula

$$
\text { Area }=\frac{1}{2} a b \sin C
$$

to work out the area of a triangle.

For this triangle,
$a=7.8 \mathrm{~cm}$ correct to the nearest mm .
$b=5.2 \mathrm{~cm}$ correct to the nearest mm .
$C=63^{\circ}$ correct to the nearest degree.
Calculate the lower bound for the area of the triangle.
cm^{2}

(Total for question = 3 marks)

Q3.
$I=\frac{V}{R}$
$V=250$ correct to the nearest 5
$R=3900$ correct to the nearest 100
Work out the lower bound for the value of I.
Give your answer correct to 3 decimal places.
You must show your working.

Q4.
$a=40$ correct to 1 significant figure.
$b=0.2$ correct to 1 significant figure.
Calculate the upper bound of $\frac{a}{b}$

Q5.
Steve travelled from Ashton to Barnfield.
He travelled 235 miles, correct to the nearest 5 miles.
The journey took him 200 minutes, correct to the nearest 5 minutes.
Calculate the lower bound for the average speed of the journey.
Give your answer in miles per hour, correct to 3 significant figures.
You must show all your working.
mph

Q6.
The value of p is 4.3
The value of q is 0.4
Both p and q are given correct to the nearest 0.1
(a) Write down the lower bound for p.
$r=p+\frac{1}{q}$
(b) Work out the upper bound for r. You must show all your working.

Q7.
$a=\frac{v-u}{t}$
$v=37.6$ correct to 3 significant figures.
$u=11.3$ correct to 3 significant figures.
$t=8.4$ correct to 2 significant figures.
Work out the upper bound for the value of a.
Show your working clearly.

