Edexcel FP3

Hyperbolic Functions

Solve the equation		
1		
	$7 \operatorname{sech} x - \tanh x = 5$	
Give your answers in	the form $\ln a$ where a is a rational number.	
Give your answers in	the form in a where a is a rational number.	(5)
		(-)

Leave blank

3.	(a)	Starting from the definitions of $\sinh x$ and $\cosh x$ in terms of exponentials, prove that
		$\cosh 2x = 1 + 2\sinh^2 x \tag{3}$
	(b)	Solve the equation $\cosh 2x - 3 \sinh x = 15$,
		giving your answers as exact logarithms. (5)

Leave blank

- 5. The curve C_1 has equation $y = 3 \sinh 2x$, and the curve C_2 has equation $y = 13 3e^{2x}$.
 - (a) Sketch the graph of the curves C_1 and C_2 on one set of axes, giving the equation of any asymptote and the coordinates of points where the curves cross the axes.

(4)

(b) Solve the equation $3 \sinh 2x = 13 - 3e^{2x}$, giving your answer in the form $\frac{1}{2} \ln k$, where k is an integer.

(5)

Question 5 continued	blank

Leave blank

7.

$$f(x) = 5 \cosh x - 4 \sinh x, \qquad x \in \mathbb{R}$$

(a) Show that $f(x) = \frac{1}{2}(e^x + 9e^{-x})$

(2)

Hence

(b) solve f(x) = 5

(4)

(c) show that
$$\int_{\frac{1}{2}\ln 3}^{\ln 3} \frac{1}{5\cosh x - 4\sinh x} dx = \frac{\pi}{18}$$

(5)

Question 7 continued	blank

Leave blank

7.

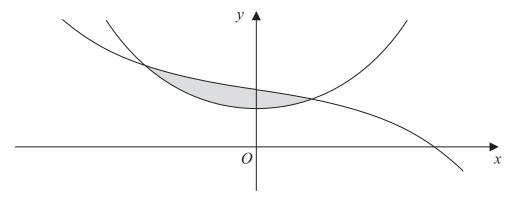


Figure 1

The curves shown in Figure 1 have equations

$$y = 6 \cosh x$$
 and $y = 9 - 2 \sinh x$

(a) Using the definitions of $\sinh x$ and $\cosh x$ in terms of e^x , find exact values for the x-coordinates of the two points where the curves intersect.

(6)

The finite region between the two curves is shown shaded in Figure 1.

(b) Using calculus, find the area of the shaded region, giving your answer in the form $a \ln b + c$, where a, b and c are integers.

(6)

stion 7 continued		

Further Pure Mathematics FP3

Candidates sitting FP3 may also require those formulae listed under Further Pure Mathematics FP1, and Core Mathematics C1–C4.

Vectors

The resolved part of **a** in the direction of **b** is $\frac{\mathbf{a.b}}{|\mathbf{b}|}$

The point dividing AB in the ratio $\lambda : \mu$ is $\frac{\mu \mathbf{a} + \lambda \mathbf{b}}{\lambda + \mu}$

Vector product:
$$\mathbf{a} \times \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \sin \theta \, \hat{\mathbf{n}} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \begin{pmatrix} a_2 b_3 - a_3 b_2 \\ a_3 b_1 - a_1 b_3 \\ a_1 b_2 - a_2 b_1 \end{pmatrix}$$

$$\mathbf{a.(b\times c)} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = \mathbf{b.(c\times a)} = \mathbf{c.(a\times b)}$$

If A is the point with position vector $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$ and the direction vector \mathbf{b} is given by $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$, then the straight line through A with direction vector \mathbf{b} has cartesian equation

$$\frac{x - a_1}{b_1} = \frac{y - a_2}{b_2} = \frac{z - a_3}{b_3} (= \lambda)$$

The plane through A with normal vector $\mathbf{n} = n_1 \mathbf{i} + n_2 \mathbf{j} + n_3 \mathbf{k}$ has cartesian equation

$$n_1 x + n_2 y + n_3 z + d = 0$$
 where $d = -a.n$

The plane through non-collinear points A, B and C has vector equation

$$\mathbf{r} = \mathbf{a} + \lambda(\mathbf{b} - \mathbf{a}) + \mu(\mathbf{c} - \mathbf{a}) = (1 - \lambda - \mu)\mathbf{a} + \lambda\mathbf{b} + \mu\mathbf{c}$$

The plane through the point with position vector **a** and parallel to **b** and **c** has equation $\mathbf{r} = \mathbf{a} + s\mathbf{b} + t\mathbf{c}$

The perpendicular distance of
$$(\alpha, \beta, \gamma)$$
 from $n_1x + n_2y + n_3z + d = 0$ is $\frac{\left|n_1\alpha + n_2\beta + n_3\gamma + d\right|}{\sqrt{n_1^2 + n_2^2 + n_3^2}}$.

Hyperbolic functions

$$\cosh^{2} x - \sinh^{2} x = 1$$

$$\sinh 2x = 2 \sinh x \cosh x$$

$$\cosh 2x = \cosh^{2} x + \sinh^{2} x$$

$$\operatorname{arcosh} x = \ln \left\{ x + \sqrt{x^{2} - 1} \right\} \quad (x \ge 1)$$

$$\operatorname{arsinh} x = \ln \left\{ x + \sqrt{x^{2} + 1} \right\}$$

$$\operatorname{artanh} x = \frac{1}{2} \ln \left(\frac{1 + x}{1 - x} \right) \quad (|x| < 1)$$

Conics

	Ellipse	Parabola	Hyperbola	Rectangular Hyperbola
Standard Form	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$y^2 = 4ax$	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$xy = c^2$
Parametric Form	$(a\cos\theta,b\sin\theta)$	$(at^2, 2at)$	$(a \sec \theta, b \tan \theta)$ $(\pm a \cosh \theta, b \sinh \theta)$	$\left(ct, \frac{c}{t}\right)$
Eccentricity	$e < 1$ $b^2 = a^2(1 - e^2)$	e=1	$e > 1$ $b^2 = a^2(e^2 - 1)$	$e = \sqrt{2}$
Foci	(±ae, 0)	(a, 0)	(±ae, 0)	$(\pm\sqrt{2}c,\pm\sqrt{2}c)$
Directrices	$x = \pm \frac{a}{e}$	x = -a	$x = \pm \frac{a}{e}$	$x + y = \pm \sqrt{2}c$
Asymptotes	none	none	$\frac{x}{a} = \pm \frac{y}{b}$	x = 0, y = 0

Differentiation

f(x) f'(x)

$$\frac{1}{\sqrt{1-x^2}}$$

$$\arcsin x \qquad \frac{1}{\sqrt{1-x^2}}$$

$$\arctan x \qquad \frac{1}{1+x^2}$$

$$\sinh x \qquad \cosh x \qquad \sinh x$$

$$\tanh x \qquad \operatorname{sech}^2 x \qquad \frac{1}{\sqrt{1+x^2}}$$

$$\operatorname{arcosh} x \qquad \frac{1}{\sqrt{1-x^2}}$$

$$\arctan x \qquad \frac{1}{\sqrt{1-x^2}}$$

$$\arctan x \qquad \frac{1}{\sqrt{1-x^2}}$$

$$\arctan x \qquad \frac{1}{\sqrt{1-x^2}}$$

Integration (+ constant; a > 0 where relevant)

$$f(x) \qquad \int f(x) \, dx$$

$$\sinh x \qquad \cosh x$$

$$\tanh x \qquad \ln \cosh x$$

$$\frac{1}{\sqrt{a^2 - x^2}} \qquad \arcsin \left(\frac{x}{a}\right) \quad (|x| < a)$$

$$\frac{1}{a^2 + x^2} \qquad \frac{1}{a} \arctan \left(\frac{x}{a}\right)$$

$$\frac{1}{\sqrt{x^2 - a^2}} \qquad \arcsin \left(\frac{x}{a}\right), \quad \ln \left\{x + \sqrt{x^2 - a^2}\right\} \quad (x > a)$$

$$\frac{1}{\sqrt{a^2 + x^2}} \qquad \arcsin \left(\frac{x}{a}\right), \quad \ln \left\{x + \sqrt{x^2 + a^2}\right\}$$

$$\frac{1}{\sqrt{a^2 - x^2}} \qquad \arcsin \left(\frac{x}{a}\right), \quad \ln \left\{x + \sqrt{x^2 + a^2}\right\}$$

$$\frac{1}{a^2 - x^2} \qquad \frac{1}{2a} \ln \left|\frac{a + x}{a - x}\right| = \frac{1}{a} \operatorname{artanh} \left(\frac{x}{a}\right) \quad (|x| < a)$$

$$\frac{1}{x^2 - a^2} \qquad \frac{1}{2a} \ln \left|\frac{x - a}{x + a}\right|$$

Arc length

$$s = \int \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$
 (cartesian coordinates)

$$s = \int \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$
 (parametric form)

Surface area of revolution

$$S_x = 2\pi \int y \, ds = 2\pi \int y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx$$
$$= 2\pi \int y \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt$$

Further Pure Mathematics FP1

Candidates sitting FP1 may also require those formulae listed under Core Mathematics C1 and C2.

Summations

$$\sum_{r=1}^{n} r^2 = \frac{1}{6} n(n+1)(2n+1)$$

$$\sum_{r=1}^{n} r^{3} = \frac{1}{4} n^{2} (n+1)^{2}$$

Numerical solution of equations

The Newton-Raphson iteration for solving f(x) = 0: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

Conics

	Parabola	Rectangular Hyperbola
Standard Form	$y^2 = 4ax$	$xy = c^2$
Parametric Form	$(at^2, 2at)$	$\left(ct, \frac{c}{t}\right)$
Foci	(a, 0)	Not required
Directrices	x = -a	Not required

Matrix transformations

Anticlockwise rotation through θ about O: $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$

Reflection in the line $y = (\tan \theta)x$: $\begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}$

In FP1, θ will be a multiple of 45°.

Candidates sitting C4 may also require those formulae listed under Core Mathematics C1, C2 and C3.

Integration (+ constant)

$$\begin{split} f(x) & \int f(x) \ dx \\ & \sec^2 kx & \frac{1}{k} \tan kx \\ & \tan x & \ln |\sec x| \\ & \cot x & \ln |\sin x| \\ & \csc x & -\ln |\csc x + \cot x|, \quad \ln |\tan(\frac{1}{2}x)| \\ & \sec x & \ln |\sec x + \tan x|, \quad \ln |\tan(\frac{1}{2}x + \frac{1}{4}\pi)| \\ & \int u \, \frac{dv}{dx} dx = uv - \int v \, \frac{du}{dx} dx \end{split}$$

Candidates sitting C3 may also require those formulae listed under Core Mathematics C1 and C2.

Logarithms and exponentials

$$e^{x \ln a} = a^x$$

Trigonometric identities

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \qquad (A \pm B \neq (k + \frac{1}{2})\pi)$$

$$\sin A + \sin B = 2 \sin \frac{A + B}{2} \cos \frac{A - B}{2}$$

$$\sin A - \sin B = 2 \cos \frac{A + B}{2} \sin \frac{A - B}{2}$$

$$\cos A + \cos B = 2 \cos \frac{A + B}{2} \cos \frac{A - B}{2}$$

$$\cos A - \cos B = -2 \sin \frac{A + B}{2} \sin \frac{A - B}{2}$$

Differentiation

f(x) f'(x)
tan kx k sec² kx
sec x sec x tan x
cot x -cosec² x
cosec x -cosec x cot x

$$\frac{f(x)}{g(x)} \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^{2}}$$

Candidates sitting C2 may also require those formulae listed under Core Mathematics C1.

Cosine rule

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Binomial series

$$(a+b)^{n} = a^{n} + \binom{n}{1} a^{n-1}b + \binom{n}{2} a^{n-2}b^{2} + \dots + \binom{n}{r} a^{n-r}b^{r} + \dots + b^{n} \quad (n \in \mathbb{N})$$

$$\text{where } \binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{1 \times 2} x^{2} + \dots + \frac{n(n-1)\dots(n-r+1)}{1 \times 2 \times \dots \times r} x^{r} + \dots \quad (\mid x \mid < 1, n \in \mathbb{R})$$

Logarithms and exponentials

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Geometric series

$$u_n = ar^{n-1}$$

$$S_n = \frac{a(1-r^n)}{1-r}$$

$$S_{\infty} = \frac{a}{1-r}$$
 for $|r| < 1$

Numerical integration

The trapezium rule:
$$\int_a^b y \ dx \approx \frac{1}{2} h\{(y_0 + y_n) + 2(y_1 + y_2 + ... + y_{n-1})\}$$
, where $h = \frac{b-a}{n}$

Mensuration

Surface area of sphere = $4\pi r^2$

Area of curved surface of cone = $\pi r \times \text{slant height}$

Arithmetic series

$$u_n = a + (n-1)d$$

$$S_n = \frac{1}{2} n(a+1) = \frac{1}{2} n[2a + (n-1)d]$$