FP2 Paper *adapted 2008

1. Solve the differential equation $\frac{dy}{dx} - 3y = x$

to obtain y as a function of x.

(Total 5 marks)

3. (a) Find the general solution of the differential equation $3\frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = x^2$

(8)

- (b) Find the particular solution for which, at x = 0, y = 2 and $\frac{dy}{dx} = 3$.(6)(Total 14 marks)
- 5. (a) Find, in terms of k, the general solution of the differential equation

$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 3x = kt + 5$$
, where k is a constant and $t > 0.(7)$

For large values of t, this general solution may be approximated by a linear function.

- (b) Given that k = 6, find the equation of this linear function.(2)(Total 9 marks)
- 7. (a) Show that the substitution y = vx transforms the differential equation

$$\frac{dy}{dx} = \frac{x}{y} + \frac{3y}{x}, \quad x > 0, \quad y > 0$$
 (I)

into the differential equation $x \frac{dv}{dx} = 2v + \frac{1}{v}$. (II)

(b) By solving differential equation (II), find a general solution of differential equation (I) in the form y = f(x). (7)

Given that y = 3 at x = 1,

(c) find the particular solution of differential equation (I).(2)

9.
$$(x^2 + 1)\frac{d^2y}{dx^2} = 2y^2 + (1 - 2x)\frac{dy}{dx}$$
 (I)

(a) By differentiating equation (I) with respect to x, show that

$$(x^{2}+1)\frac{d^{3}y}{dx^{3}} = (1-4x)\frac{d^{2}y}{dx^{2}} + (4y-2)\frac{dy}{dx}.$$
 (3)

Given that y = 1 and $\frac{dy}{dx} = 1$ at x = 0,

- (b) find the series solution for y, in ascending powers of x, up to and including the term in x_3 .(4)
- (c) Use your series to estimate the value of y at x = -0.5, giving your answer to two decimal places.(1)