1. A curve C is described by the equation

$$3x^2 + 4y^2 - 2x + 6xy - 5 = 0.$$

Find an equation of the tangent to C at the point (1, -2), giving your answer in the form ax + by + c = 0, where a, b and c are integers.

(7)

(Mark scheme on next page)

Question Number	Scheme	Marks
1.	Differentiates	M1
	$6x + 8y \frac{dy}{dx} - 2,$	A1,
	to obtain: $+(6x \frac{dy}{dx} + 6y) = 0$	+(B1)
	$\left[\frac{dy}{dx} = \frac{2 - 6x - 6y}{6x + 8y}\right]$	
	Substitutes $x = 1$, $y = -2$ into expression involving $\frac{dy}{dx}$, to give $\frac{dy}{dx} = -\frac{8}{10}$	M1, A1
	Uses line equation with numerical 'gradient' $y - (-2) = (\text{their gradient})(x - 1)$ or finds c and uses $y = (\text{their gradient}) x + "c"$	M1
	To give $5y+4x+6=0$ (or equivalent = 0)	A1√ [7]