Question number	Scheme	Marks
11.	(a) $u_{25}=a+24 d=30+24 \times(-1.5)$ $\begin{equation*} =-6 \tag{2} \end{equation*}$ (b) $a+(n-1) d=30-1.5(r-1)=0$ $\begin{equation*} r=21 \tag{2} \end{equation*}$ (c) $\begin{aligned} S_{20} & =\frac{20}{2}\{60+19(-1.5)\} \text { or } S_{21}=\frac{21}{2}\{60+20(-1.5)\} \text { or } S_{21}=\frac{21}{2}\{30+0\} \\ & =315 \end{aligned}$	M1 A1 M1 A1 M1 A1ft A1 (3)
	(a) M: Substitution of $a=30$ and $d= \pm 1.5$ into ($a+24 d$). Use of $a+25 d$ (or any other variations on 24) scores M0. (b) M: Attempting to use the term formula, equated to 0 , to form an equation in r (with no other unknowns). Allow this to be called n instead of r. Here, being 'one off' (e.g. equivalent to $a+n d$), scores M1. (c) M: Attempting to use the correct sum formula to obtain S_{20}, S_{21}, or, with their r from part (b), S_{r-1} or S_{r}. $1^{\text {st }} \mathrm{A}(\mathrm{ft})$: A correct numerical expression for S_{20}, S_{21}, or, with their r from part (b), S_{r-1} or $S_{r} \ldots$. but the ft is dependent on an integer value of r. Methods such as calculus to find a maximum only begin to score marks after establishing a value of r at which the maximum sum occurs. This value of r can be used for the M1 A1ft, but must be a positive integer to score A marks, so evaluation with, say, $n=20.5$ would score M1 A0 A0. 'Listing' and other methods (a) M: Listing terms (found by a correct method), and picking the $\underline{25^{\text {th }}}$ term. (There may be numerical slips). (b) M: Listing terms (found by a correct method), until the zero term is seen. (There may be numerical slips). ‘Trial and error’ approaches (or where working is unclear or non-existent) score M1 A1 for 21, M1 A0 for 20 or 22, and M0 A0 otherwise. (c) M : Listing sums, or listing and adding terms (found by a correct method), at least as far as the $20^{\text {th }}$ term. (There may be numerical slips). A2 (scored as A1 A1) for 315 (clearly selected as the answer). 'Trial and error' approaches essentially follow the main scheme, beginning to score marks when trying S_{20}, S_{21}, or, with their r from part (b), S_{r-1} or S_{r}, If no working (or no legitimate working) is seen, but the answer 315 is given, allow one mark (scored as M1 A0 A0). For reference: Sums: 30, 58.5, 85.5, 111, 135, 157.5, 178.5, 198, 216, 232.5, 247.5, 261, 273, 283.5, 292.5, 300, 306, 310.5, 313.5, 315,	

Mark parts (a) and (b) as 'one part', ignoring labelling.
(a) Alternative:
$1^{\text {st }} \mathrm{B} 1: d=2.5$ or equiv.or $d=\frac{32.5-25}{3}$. No method required, but $a=-17.5$ must not be assumed.
$2^{\text {nd }} \mathrm{B} 1$: Either $a+17 d=25$ or $a+20 d=32.5$ seen, or used with a value of $d \ldots$
(b) or for 'listing terms’ or similar methods, 'counting back' 17 (or 20) terms.

M1: In main scheme: for a full method (allow numerical or sign slips) leading to solution for d or a without assuming $a=-17.5$
In alternative scheme: for using a d value to find a value for a.
A1: Finding correct values for both a and d (allowing equiv. fractions such as $d=\frac{15}{6}$), with no incorrect working seen.

In the main scheme, if the given a is used to find d from one of the equations, then allow M1A1 if both values are checked in the $2^{\text {nd }}$ equation.
$1^{\text {st }}$ M1 for attempt to form equation with correct S_{n} formula and 2750, with values of a and d.
$1^{\text {st }} \mathrm{A} 1 \mathrm{ft}$ for a correct equation following through their d.
$2^{\text {nd }}$ M1 for expanding and simplifying to a 3 term quadratic.
(d) $2^{\text {nd }} \mathrm{A} 1$ for correct working leading to printed result (no incorrect working seen).
$1^{\text {st }}$ M1 forming the correct $3 \mathrm{TQ}=0$. Can condone missing " $=0$ " but all terms must be on one side. First M1 can be implied (perhaps seen in (c), but there must be an attempt at (d) for it to be scored). $2^{\text {nd }} \mathrm{M} 1$ for attempt to solve 3TQ, by factorisation, formula or completing the square (see general marking principles at end of scheme). If this mark is earned for the 'completing the square' method or if the factors are written down directly, the $1^{\text {st }} \mathrm{M} 1$ is given by implication.
A1 for $n=55$ dependent on both Ms. Ignore - 40 if seen.
No working or 'trial and improvement' methods in (d) score all 3 marks for the answer 55, otherwise no marks.

Question Number	Scheme	Marks
Q5 (a) (b) (c)	$\begin{aligned} & \begin{array}{l} a+9 d=2400 \quad a+39 d=600 \\ d=\frac{-1800}{30} \quad d=-60 \quad(\text { accept } \pm 60 \text { for A1 }) \\ a-540=2400 \quad a=2940 \end{array} \\ & \begin{aligned} \text { Total }=\frac{1}{2} n\{2 a+(n-1) d\} & =\frac{1}{2} \times 40 \times(5880+39 \times-60) \quad(\mathrm{ft} \text { values of } a \text { and } d) \\ & =\underline{70800} \end{aligned} \end{aligned}$	M1 M1 A1 (3) M1 A1 (2) M1 A1ft Alcao (3) [8]
(a) (b) (c)	Note: If the sequence is considered 'backwards', an equivalent solution may be given using $d=60$ with $a=600$ and $l=2940$ for part (b). This can still score full marks. Ignore labelling of (a) and (b) $1^{\text {st }}$ M1 for an attempt to use 2400 and 600 in $a+(n-1) d$ formula. Must use both values i.e. need $a+p d=2400$ and $a+q d=600$ where $p=8$ or 9 and $q=38$ or 39 (any combination) $2^{\text {nd }} \mathrm{M} 1$ for an attempt to solve their 2 linear equations in a and d as far as $d=\ldots$ A1 for $d= \pm 60$. Condone correct equations leading to $d=60$ or $a+8 d=2400$ and $\quad a+38 d=600$ leading to $d=-60$. They should get penalised in (b) and (c). NB This is a "one off" ruling for A1. Usually an A mark must follow from their work. ALT $1^{\text {st }}$ M1 for (30d) $= \pm(2400-600)$ $2^{\text {nd }}$ M1 for $(d=) \pm \frac{(2400-600)}{30}$ A1 for $d= \pm 60$ $a+9 d=600, a+39 d=2400$ only scores M0 BUT if they solve to find $d= \pm 60$ then use ALT scheme above. M1 for use of their d in a correct linear equation to find a leading to $a=\ldots$ A1 their a must be compatible with their d so $d=60$ must have $a=600$ and $d=-60$, $a=2940$ So for example they can have $2400=a+9(60)$ leading to $a=\ldots$ for M1 but it scores A0 Any approach using a list scores M1A1 for a correct a but M0A0 otherwise M1 for use of a correct S_{n} formula with $n=40$ and at least one of a, d or l correct or correct ft. $1^{\text {st }}$ A1ft for use of a correct S_{40} formula and both a, d or a, l correct or correct follow through ALT Total $=\frac{1}{2} n\{a+l\}=\frac{1}{2} \times 40 \times(2940+600) \quad(\mathrm{ft}$ value of $a)$ M1 A1ft $2^{\text {nd }}$ A1 for 70800 only	

Question number	Scheme	Marks
Q7	(a) $a+9 d=150+9 \times 10=240$	M1 A1 (2)
	(b) $\frac{1}{2} n\{2 a+(n-1) d\}=\frac{20}{2}\{2 \times 150+19 \times 10\},=4900$	M1 A1, A1
	$\begin{gathered} \text { (c) Kevin: } \frac{1}{2} n\{2 a+(n-1) d\}=\frac{20}{2}\{2 A+19 \times 30\} \\ \text { Kevin's total }=2 \times " 4900 \text { " (or "4900" }=2 \times \text { Kevin's total) } \\ \frac{20}{2}\{2 A+19 \times 30\}=2 \times " 4900 " \\ A=205 \end{gathered}$	B1 M1 Alft A1 (4) [9]
	(a) M: Using $a+9 d$ with at least one of $a=150$ and $d=10$. Being 'one off' (e.g. equivalent to $a+10 d$), scores M0. Correct answer with no working scores both marks. (b) M: Attempting to use the correct sum formula to obtain S_{20}, with at least one of $a=150$ and $d=10$. If the wrong value of n or a or d is used, the M mark is only scored if the correct sum formula has been quoted. $1^{\text {st }} \mathrm{A}$: Any fully correct numerical version. (c) B: A correct expression, in terms of A, for Kevin's total. M: Equating Kevin's total to twice Jill's total, or Jill's total to twice Kevin's. For this M mark, the expression for Kevin's total need not be correct, but must be a linear function of A (or a). $1^{\text {st }} \mathrm{A}$: (Kevin's total, correct, possibly unsimplified) $=2$ (Jill's total), ft Jill's total from part (b). 'Listing' and other methods (a) M: Listing terms (found by a correct method with at least one of $a=150$ and $d=10$), and picking the $10^{\text {th }}$ term. (There may be numerical slips). (b) M: Listing sums, or listing and adding terms (found by a correct method with at least one of $a=150$ and $d=10$), far enough to establish the required sum. (There may be numerical slips). Note: $20^{\text {th }}$ term is 340 . A2 (scored as A1 A1) for 4900 (clearly selected as the answer). If no working (or no legitimate working) is seen, but the answer 4900 is given, allow one mark (scored as M1 A0 A0). (c) By trial and improvement: Obtaining a value of A for which Kevin's total is twice Jill's total, or Jill's total is twice Kevin's (using Jill's total from (b)): M1 Obtaining a value of A for which Kevin's total is twice Jill's total (using Jill's total from (b)): A1ft Fully correct solutions then score the B1 and final A1. The answer 205 with no working (or no legitimate working) scores no marks.	

