Name: \qquad

Pythagoras and Trigonometry Problem Solving 1

Date:

Time:
Total marks available: 22
Total marks achieved: \qquad

Solutions

Questions

Q1.

The diagram shows a regular pentagon $A B C D E$.

The pentagon is divided into 5 isosceles triangles. $O A=O B=O C=O D=O E=6 \mathrm{~m}$

$$
\begin{aligned}
& \text { Area of pentagon } \\
& =5 \times 17.12 \\
& =85.6 \mathrm{~m}^{2}
\end{aligned}
$$

Work out the area of the pentagon. Give your answer correct to 1 decimal place.
85.6

$$
\text { to } 1 d_{0} \rho_{0}
$$

(Total for question = 4 marks)

Q2.

accurately drawn
$A B C$ is a triangle.

$$
\angle C A B=180-(64+49)=67^{\circ}
$$

$A B=8.7 \mathrm{~cm}$.
Angle $A B C=49^{\circ}$.
Angle $A C B=64^{\circ}$.
Calculate the area of triangle $A B C$.
Give your answer correct to 3 significant figures.
Sine Rule

$$
\begin{aligned}
& \frac{x}{\sin 49^{\circ}}=\frac{8.7}{\sin 64^{\circ}} \\
& x=\frac{8.7}{\sin 64^{\circ}} \times \sin 49^{\circ} \\
& x=7.305 \mathrm{~cm}
\end{aligned}
$$

$$
\text { Area of } \begin{aligned}
\triangle A B C & =\frac{1}{2} b c \sin A \\
& =\frac{1}{2} \times 7.305 \times 8.7 \sin 67^{\circ} \\
& =29.25 \mathrm{~cm}^{2} \\
& =29.3 \mathrm{~cm}^{2}
\end{aligned}
$$

to 3 sf.
29.3 \qquad
(Total for Question is $\mathbf{5}$ marks)

Qu.

* The diagram shows a triangle $D E F$ inside a rectangle $A B C D$.

Show that the area of triangle $D E F$ is $8 \mathrm{~cm}^{2}$. In $\triangle D C F$ You must show all your working.

$$
\begin{aligned}
& x^{2}+2^{2}=(2 \sqrt{10})^{2} \\
& x^{2}+4=40 \\
& x^{2}=40-4=36 \\
& x=\sqrt{36}=6
\end{aligned}
$$

so area of rectangle $=6 \times 4=24 \mathrm{~cm}^{2}$
Area of $\triangle A E D=\frac{1}{2} \times 4 \times 4=8 \mathrm{~cm}^{2}$
Area of $\triangle B E F=\frac{1}{2} \times 2 \times 2=2 \mathrm{~cm}^{2}$
Area of $\triangle D C F=\frac{1}{2} \times 2 \times 6=\frac{6 \mathrm{~cm}^{2}}{\text { Total }}=\begin{aligned} 16 \mathrm{~cm}^{2}\end{aligned}$

$$
\text { Area of } \triangle \text { DEF }=24-16=8 \mathrm{~cm}^{2}
$$

QU.

Diagram NOT accurately drawn

In the diagram,
In $\triangle A B Q$

$$
\begin{aligned}
& 5^{2}+6^{2}=x^{2} \\
& 25+36=x^{2}
\end{aligned}
$$

$A B C D$ is a rectangle

Work out the length of $B C$.
In $\triangle B Q P$
Give your answer correct to 3 significant figures.
You must show your working.

$$
\begin{aligned}
& \cos 30=\frac{x}{y} \\
& y \cos 30=x \\
& y=\frac{x}{\cos 30}=\frac{7.810}{\cos 30}
\end{aligned}
$$

$$
y=9.018 \mathrm{~cm}
$$

In $\triangle P B C$
$\cos 9.8^{\circ}=\frac{B C}{y}$
$y \cos 9.8^{\circ}=B C$

$$
\begin{array}{cl}
9.018 \cos 9.8 & =B C \\
8.886 & =B C
\end{array}
$$

$$
B C=8.89
$$

$$
\text { to } 3 \text { sst. }
$$

$$
\begin{aligned}
& \text { In } \triangle B A Q \\
& \tan \theta=\frac{6}{5} \\
& \theta=\tan ^{-1}\left(\frac{6}{5}\right)=50.2^{\circ} \\
& \therefore \angle P B C=90-30-50.2 \\
& =9.8^{\circ}
\end{aligned}
$$

Q5.

The diagram shows a square $A B C D$ inside a circle.

The points A, B, C and D lie on the circle.
The radius of the circle is 6 cm .
Work out the total area of the shaded regions.
Give your answer correct to 3 significant figures.
Diagram NOT accurately drawn

Area of Shaded Regions
= Area of circle

- Area of square

Area of circle

$$
=\pi r^{2}=\pi \times 6^{2}
$$

$$
=113.097 \mathrm{~cm}^{2}
$$

Area of $\triangle A D B$

$$
\begin{aligned}
& =\frac{1}{2} \text { base } \times \text { height } \\
& =\frac{1}{2} \times 12 \times 6=36 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of square $=2 \times 36$ $=72 \mathrm{~cm}^{2}$
Area of shaded region

$$
\begin{aligned}
& =113.097-72 \\
& =41.097 \\
& =41.1 \mathrm{~cm}^{2} \text { to 3s.t. }
\end{aligned}
$$

\qquad cm^{2}

