Name:	

Pythagoras and Trigonometry Problem Solving 1

Date:			

Time:

Total marks available: 22

Total marks achieved: _____

Solutions

Questions

Q1.

The diagram shows a regular pentagon ABCDE.

Diagram NOT accurately drawn

 $\angle AOE = \frac{360}{5} = 72^{\circ}$

Area of $\triangle AOE$ $= \frac{1}{2}absinC$ $= \frac{1}{2} \times 6 \times 6 \times 8 \times 10^{-72}$ $= 17.12 m^{2}$

D

The pentagon is divided into 5 isosceles triangles. OA = OB = OC = OD = OE = 6 m

Work out the area of the pentagon. Give your answer correct to 1 decimal place. Area of pentagon = 5 x 17.12 = 85.6 m²

> 85.6 to 1 d.p.

> > (Total for question = 4 marks)

accurately drawn

Diagram NOT

ABC is a triangle.

AB = 8.7 cm. Angle ABC = 49°. Angle ACB = 64°.

Calculate the area of triangle ABC.
Give your answer correct to 3 significant figures.

Sine Rule

$$50 = \frac{8.7}{51064^{\circ}} \times 50049^{\circ}$$

Area of
$$\triangle ABC = \frac{1}{2}bcsinA$$

= $\frac{1}{2} \times 7.305 \times 8.7 sin 67^{\circ}$
= 29.25 cm²
= 29.3 cm²
to 3 s.f. 29.3 cm²

(Total for Question is 5 marks)

* The diagram shows a triangle DEF inside a rectangle ABCD.

Show that the area of triangle DEF is 8 cm². $I_n \triangle D \in F$ You must show all your working.

Diagram NOT accurately drawn

Area of DDEF

= Area of rectangle
minus the sum of
the areas of other
three triangles

 $2x^{2} + 2^{2} = (2\sqrt{10})^{2}$ $2x^{2} + 4 = 40$ $2x^{2} = 40 - 4 = 36$ $2x = \sqrt{36} = 6$

so area of rectangle = 6x4 = 24cm2

Area of
$$\triangle AED = 2 \times 4 \times 4 = 8 \text{ cm}^2$$

Area of $\triangle BEF = 2 \times 2 \times 2 = 2 \text{ cm}^2$
Area of $\triangle DCF = 2 \times 2 \times 6 = 6 \text{ cm}^2$
Total = 16 cm^2

(Total for question = 4 marks)

Diagram NOT accurately drawn

In the diagram,

ABCD is a rectangle
P lies on the line CD
Q lies on the line AD
PQB is a right-angled triangle

Work out the length of *BC*. Give your answer correct to 3 significant figures. You must show your working.

In
$$\triangle BAQ$$

 $Ean Q = \frac{6}{5}$
 $B = \frac{6}{5}$
 $A = \frac{6}{5}$
 $A = \frac{6}{5}$

2.2980 = 90-30-50.2

In A AGQ

$$25 + 36 = x^{2}$$

$$61 = x^{2}$$

$$\sqrt{61} = x$$

$$x = 7.810$$

In A BOP

$$\cos 30 = \frac{x}{y}$$
 $y\cos 30 = x$
 $y = \frac{5c}{\cos 30} = \frac{7.810}{\cos 30}$
 $y = 9.018 \text{ cm}$

 $5^{2}+6^{2}=x^{2}$

$$2059.8^{\circ} = BC$$
 $30059.8^{\circ} = BC$
 $9.013\cos 9.8^{\circ} = BC$
 $8.886 = BC$
 $8C = 8.89$

to 35.6

(Total for question = 5 marks)

The diagram shows a square ABCD inside a circle.

Diagram NOT accurately drawn

Area of
Shaded Regions

= Area of circle

- Area of square

The points A, B, C and D lie on the circle.

The radius of the circle is 6 cm.

Work out the total area of the shaded regions. Give your answer correct to 3 significant figures.

Area of circle $= \pi r^2 = \pi \times 6^2$ $= 113.097 \text{ cm}^2$

Area of \triangle ADB

= $\frac{1}{2}$ base \times height

= $\frac{1}{2}$ × 12 × 6 = 36 cm²

Area of Square = 2 × 36

= 72 cm²

Area of shaded region
= 113.097-72
= 41.097
= 41.1 cm² to 3 s.f.

41.1 cm²