Paper 4761	Name Mechanics 1	Session Jan	Year 2005
I upti iioi	i tunite i i i centunites i		

Solutions and mark scheme

Q 7		mark		
(i)	Horiz $(40\cos 50)t$	B1		
	Vert $(40\sin 50)t - 4.9t^2$	M 1	Use of $s = ut + 0.5at^2$ with $a = \pm 9.8 \text{ or } \pm 10$.	
		A1	Allow $u = 40$. Condone s \leftrightarrow c. Any form	3
(ii)	Need $(40\sin 50)t - 4.9t^2 = 0$	M1	Equating their y to zero. Allow quadratic y only	
	so $t = \frac{40 \sin 50}{40}$	M1	Dep on 1 st M1. Attempt to solve.	
	4.9 = 6.2534 so 6.253 s (3 d. p.)	E1	Clearly shown [or M1 (allow $u = 40$ and $s \leftrightarrow c$) A1 time to greatest	
	Range is $(40\cos 50) \times 6.2534$	M1	Use of their horiz expression	
	= 160.78 \$0 161 m (3 \$. f.)	AI	Any reasonable accuracy	5
(iii)	Time AB is given by $(40 \cos 50)T = 30$ so $T = 1.16679$ so 1.17 s	M1 A1	Equating their linear <i>x</i> to 30.	
	then either By symmetry, time AC is time AD – time AB	M1	Symmetry need not be explicit. Method may be implied. Any valid method using symmetry.	
	so time AC is $6.2534 \frac{30}{40\cos 50}$ = 5.086 so 5.09 s (3 s. f.) or	A1	cao	
	height is $(40 \sin 50)T - 4.9T$ and we need $(40 \sin 50)t - 4.9t^2 = (40 \sin 50)T - 4.9T^2$ solved for larger root	M1	Complete method to find time to second occasion at that height	
	i.e. solve $4.9t^2 - (40\sin 50)t + 29.08712 = 0$ for larger root giving 5.086	A1	cao	4
(iv)	$\mathbf{s} = 40\cos 50$	B1	Must be part of a method using velocities.	
	$\oint = 40 \sin 50 - 9.8 \times 5.086$	M1 A1	Use of vert cpt of vel Allow only sign error. FT use of their 5.086	
	Need $\arctan \frac{\mathbf{\hat{y}}}{\mathbf{\hat{x}}}$	M 1	May be implied. Accept $\arctan \frac{\pounds}{\pounds}$ but not use of \pounds .	
	So –36.761…° so 36.8° below horizontal (3 s.f.)	A1	Accept ± 36.8 or equivalent. Condone direction not clear.	5
	total	17		

PMT

4761

Q 7 (i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

 $20\sin 60t - 0.5 \times 10t^2 = 10\sqrt{3}t - 5t^2$ (AG)

Need $10\sqrt{3}t - 5t^2 = 12t - 5t^2 + 9$

t = 1.6915... so 1.7 s (2 s. f.) (AG)

 $\Rightarrow t = \frac{9}{10\sqrt{3} - 12}$

A1

M1

A1

E1

19

total

explained.

Equating the given expressions

Expression for *t* obtained in any form

Award M1 A1 E0 for 1.7 sub in each ht

Mark So	cheme	June 2005		
	mark		Sub	
	D1	Accort any common 2 of an batter		
$u = \sqrt{10^2 + 12^2} = 15.62$	ы	Accept any accuracy 2 s. 1. of better		
$\theta = \arctan\left(\frac{12}{10}\right) = 50.1944$ so 50.2 (3s.f.)	M1	Accept $\arctan\left(\frac{10}{12}\right)$		
		(Or their $15.62\cos\theta = 10$ or their $15.62\sin\theta = 12$)		
	A1	[FT their 15 62 if used]		
		[If θ found first M1 A1 for θ F1 for u]		
		[If B0 M0 SC1 for both $u\cos\theta = 10$ and $u\sin\theta = 12$ seen]	3	
vert $12t - 0.5 \times 10t^2 + 9$	M1	Use of $s = ut + 0.5at^2$, $a = \pm 9.8$ or ± 10 and $u = 12$ or		
		15.62 Condone $-9 = 12t - 0.5 \times 10t^2$, condone		
		$y = 9 + 12t - 0.5 \times 10t^2$. Condone g.		
$12(-5)^2 + 0 - (4.5)$	A1	All correct with origin of $u = 12$ clear; accept 9 omitted Peacon for 9 given. Must be clear unless, $y = g_{11}$		
$= 12t - 5t^{2} + 9$ (AG)	EI	Leason for 9 given. Must be clear unless $y = s_0 +$ used.		
horiz 10t	B1			
			4	
$0 = 12^2 - 20s$	M1	Use of $v^2 = u^2 + 2as$ or equiv with $u = 12$, $v = 0$.		
		Condone $u \leftrightarrow v$		
s = 7.2 so 7.2 m	A1	From CWO. Accept 16.2.	2	
We require $0 = 12t - 5t^2 + 9$	M1	Use of y equated to 0		
Solve for t the + ve root is 3	MI A1	Attempt to solve a 3 term quadratic		
range is 30 m	F1	FT root and their <i>x</i> .		
C		[If range split up M1 all parts considered; M1 valid		
		method for each part; AI final phase correct; AI]	4	
Horiz displacement of B: $20 \cos 60t = 10t$	B1	Condone unsimplified expression. Award for $20\cos 60 = 10$		
Comparison with Horiz displacement of A	E1	Comparison clear, must show $10t$ for each or explain.		
			2	
vertical height is				

Clearly shown. Accept decimal equivalence for $10\sqrt{3}$

(at least 3 s. f.). Accept $-5t^2$ and $20\sin 60 = 10\sqrt{3}$ not

Clearly shown. Accept 3 s. f. or better as evidence.

1

3

PMT

Q 8		mark		Sub
(i)	$x = 14\cos 60t$ SO $x = 7t$ $y = 14\sin 60t - 4.9t^{2} + 1$ $y = 7\sqrt{3}t - 4.9t^{2} + 1$ $(y = 12.124t - 4.9t^{2} + 1)$	M1 A1 M1 A1 A1	Consider motion in <i>x</i> direction. Need not resolve. Allow $\sin \leftrightarrow \cos$. Condone +1 seen. Need not be simplified. Suitable <i>uvast</i> used for <i>y</i> with $g = \pm 9.8, \pm 10, \pm 9.81$ soi Need not resolve. Allow $\sin \leftrightarrow \cos$. Allow + 10mitted. Any form and 2 s. f. Need not be simplified All correct. +1 need not be justified. Accept any form and 2 s. f. Need not be simplified.	5
(ii) (A)	time taken to reach highest point $0 = 7\sqrt{3} - 9.8T$ so $\frac{5\sqrt{3}}{7}$ s (1.23717 = 1.24 s (3 s. f.))	M1	Appropriate <i>uvast</i> . Accept $u = 14$ and $\sin \leftrightarrow \cos$ and $u \leftrightarrow v$. Require $v = 0$ or equivalent. $g = \pm 9.8, \pm 10, \pm 9.81$ soi. cao [If time of flight attempted, do not award M1 if twice interval obtained]	2
(B)	distance from base is $7 \times \frac{5\sqrt{3}}{7} = 5\sqrt{3}$ m (= 8.66025 so 8.66 m (3 s. f.))	M1 B1	Use of their $x = 7t$ with their T FT their T only in $x = 7t$. Accept values rounding to 8.6 and 8.7.	2
(C)	either Height at this time is $H = 7\sqrt{3} \times \frac{5\sqrt{3}}{7} - 4.9 \times \left(\frac{5\sqrt{3}}{7}\right)^2 + 1$ $= 8.5$	M1 A1 A1	Subst in their quadratic <i>y</i> with their <i>T</i> . Correct subst of their <i>T</i> in their <i>y</i> which has attempts at all 3 terms. Do not accept $u = 14$.	

	clearance is $8.5 - 6 = 2.5 \text{ m}$	E1	Clearly shown.	
	or for height above pt of projection $0 = (7\sqrt{3})^2 + 2 \times -9.8 \times s$	M1	Appropriate $uvast$. Accept $u = 14$.	
		A1	$g = \pm 9.8, \pm 10, \pm 9.81$ sol Attempt at vert cpt accept sin $\leftrightarrow \cos$. Accept sign errors but not $u = 14$.	
	s = 7.5 so clearance is $7.5 - 5 = 2.5$ m	A1 E1	Clearly shown.	4
(iii)	See over			

Q 8	continued	mark		su b
(iii)	Elim t between $y = 7\sqrt{3}t - 4.9t^2 + 1$ and x = 7t	M1	Must see their $t = x/7$ fully substituted in their	
	so $y = 7\sqrt{3}\frac{x}{7} - 4.9\left(\frac{x}{7}\right)^2 + 1$ so $y = \sqrt{3}x - 0.1x^2 + 1$	F1	quadratic y (accept bracket errors) Accept any form correctly written. FT their x and 3 term quadratic y (neither using $u = 14$)	2
(iv)	either need $6 = 7\sqrt{3}t - 4.9t^2 + 1$ so $4.9t^2 - 7\sqrt{3}t + 5 = 0$	M1 M1	their quadratic <i>y</i> from (i) = 6, or equivalent. Dep. Attempt to solve this 3 term quadratic. (Allow u = 14).	
	$t = \frac{5(\sqrt{3}\pm 1)}{7} (0.52289 \text{ or}$	A1	for either root	
	moves by $\left(\frac{5(\sqrt{3}+1)}{7} - \frac{5\sqrt{3}}{7}\right) \times 7$ [(1.95146 1.23717)×7]	M1	Moves by $ \text{their root} - \text{their (ii)(A)} \times 7 \text{ or}$ equivalent. Award this for recognition of correct dist	
	= 5 m	A1	cao [If new distance to wall found must have larger of 2 +ve roots for 3 rd M and award max 4/5 for 13.66]	
	or using equation of trajectory with $y = 6$			

PMT

_		
Г		T
Г	- IVI	
•		•

$6 = \sqrt{3}x - 0.1x^{2} + 1$ Solving $x^{2} - 10\sqrt{3}x + 50 = 0$	M1 M1	Equating their quadratic trajectory equn to 6 Dep. Attempt to solve this 3 term quadratic. (Allow $u = 14$).	
$x = 5(\sqrt{3} \pm 1)$ (13.660 or 3.6602)	A1	for either root	
distance is $5(\sqrt{3}+1)-5\sqrt{3}$	M1	distance is their root – their(ii)(B)	
		Award this for recognition of correct dist (no calc)	
= 5 m	A1	Cao [If new distance to wall found must have larger of 2 + ve roots for 3 rd M and award max 4/5 for 13.66]	
		-	5
			20

Sub

8

PMT

Q 5

- (i) $0^2 = V^2 2 \times 9.8 \times 22.5$ $V = 21 \text{ so } 21 \text{ m s}^{-1}$
- (ii) $28\sin\theta = 21$ so $\theta = 48.59037...$

(iii) Time to highest point is
$$\frac{21}{9.8} = \frac{15}{7}$$

Distance is $2 \times \frac{15}{7} \times 28 \times \cos(\text{their }\theta)$..

mark

M1 E1	Use of appropriate <i>uvast</i> . Give for correct expression Clearly shown. Do not allow $v^2 = 0 + 2gs$ without explanation. Accept using $V = 21$ to show $s = 22.5$.	2
M1 A1	Attempt to find angle of projection. Allow $\sin \leftrightarrow \cos $.	2
B1	Or equivalent (time of whole flight)	
M1	Valid method for horizontal distance. Accept 1/2 time.	
B1 A1	Do not accept 28 used for horizontal speed or vertical speed when calculating time. Horizontal speed correct cao. Accept answers rounding to 79 or 80. [If angle with vertical found in (ii) allow up to full marks in (iii). If $\sin \leftrightarrow \cos$ allow up to B1 B1 M0 A1] [If $u^2 \sin 2\theta/g$ used then M1* Correct formula used. FT their angle. M1 Dep on *. Correct subst. FT their angle. A2 caol	
	caoj	4