Solutions and mark scheme

Q 7		mark		
(i)	Horiz $\quad(40 \cos 50) t$ Vert $\quad(40 \sin 50) t-4.9 t^{2}$	B1 M1 A1	Use of $s=u t+0.5 a t^{2}$ with $a= \pm 9.8$ or ± 10. Allow $u=40$. Condone $\mathrm{s} \leftrightarrow \mathrm{c}$. Any form	3
(ii)	Need $(40 \sin 50) t-4.9 t^{2}=0$ so $t=\frac{40 \sin 50}{4.9}$ $=6.2534 \ldots$ so $6.253 \mathrm{~s}(3 \mathrm{~d} . \mathrm{p}$. Range is $(40 \cos 50) \times 6.2534 \ldots$ $=160.78 \ldots$ so 161 m ($3 \mathrm{~s} . \mathrm{f}$.)	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { E1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Equating their y to zero. Allow quadratic y only Dep on $1^{\text {st }} \mathrm{M} 1$. Attempt to solve. Clearly shown [or M1 (allow $u=40$ and $\mathrm{s} \leftrightarrow \mathrm{c}$) A1 time to greatest height; E1] Use of their horiz expression Any reasonable accuracy	5
(iii)	Time AB is given by $(40 \cos 50) T=30$ so $T=1.16679 \ldots$ so 1.17 s then either By symmetry, time $A C$ is time $A D$ - time $A B$ so time AC is $6.2534 \ldots-\frac{30}{40 \cos 50}$ $=5.086 \ldots$ so $5.09 \mathrm{~s}(3 \mathrm{~s} . \mathrm{f}$.) or height is $(40 \sin 50) T-4.9 T^{2}$ and we need $(40 \sin 50) t-4.9 t^{2}=(40 \sin 50) T-4.9 T^{2}$ solved for larger root i.e. solve $4.9 t^{2}-(40 \sin 50) t+29.08712 \ldots=0$ for larger root giving 5.086...	M1 A1 M1 A1 M1 A1	Equating their linear x to 30 . Symmetry need not be explicit. Method may be implied. Any valid method using symmetry. cao Complete method to find time to second occasion at that height cao	4
(iv)	$\begin{aligned} & \hat{x}=40 \cos 50 \\ & \hat{x}=40 \sin 50-9.8 \times 5.086 \ldots \end{aligned}$ Need $\arctan \frac{\oint}{\mathfrak{x}}$ So - $36.761 \ldots{ }^{\circ}$ so 36.8° below horizontal (3 s.f.)	B1 M1 A1 M1 A1	Must be part of a method using velocities. Use of vert cpt of vel Allow only sign error. FT use of their 5.086.. May be implied. Accept $\arctan \frac{\mathcal{\&}}{\& \&}$ but not use of $\&$. Accept ± 36.8 or equivalent. Condone direction not clear.	5
	total	17		

Q 7		mark		Sub
(i)	$\begin{aligned} & u=\sqrt{10^{2}+12^{2}}=15.62 . . \\ & \theta=\arctan \left(\frac{12}{10}\right)=50.1944 \ldots \text { so } 50.2 \text { (3s.f.) } \end{aligned}$	B1 M1 A1	Accept any accuracy 2 s. f. or better Accept $\arctan \left(\frac{10}{12}\right)$ (Or their $15.62 \cos \theta=10$ or their $15.62 \sin \theta=12$) [FT their 15.62 if used] [If θ found first M1 A1 for θ F1 for u] [If B 0 M 0 SC 1 for both $u \cos \theta=10$ and $u \sin \theta=12$ seen]	3
(ii)	$\text { vert } \quad 12 t-0.5 \times 10 t^{2}+9$ $=12 t-5 t^{2}+9 \quad(\mathrm{AG})$ horiz $10 t$	M1 A1 E1 B1	Use of $s=u t+0.5 a t^{2}, a= \pm 9.8$ or ± 10 and $u=12$ or 15.62.. Condone $-9=12 t-0.5 \times 10 t^{2}$, condone $y=9+12 t-0.5 \times 10 t^{2}$. Condone g. All correct with origin of $u=12$ clear; accept 9 omitted Reason for 9 given. Must be clear unless $y=s_{0}+\ldots$ used.	4
(iii)	$\begin{aligned} & 0=12^{2}-20 s \\ & s=7.2 \text { so } 7.2 \mathrm{~m} \end{aligned}$	M1 A1	Use of $v^{2}=u^{2}+2 a s$ or equiv with $u=12, v=0$. Condone $u \leftrightarrow v$ From CWO. Accept 16.2.	2
(iv)	We require $0=12 t-5 t^{2}+9$ Solve for t the + ve root is 3 range is 30 m	M1 M1 A1 F1	Use of y equated to 0 Attempt to solve a 3 term quadratic Accept no reference to other root. cao. FT root and their x. [If range split up M1 all parts considered; M1 valid method for each part; A1 final phase correct; A1]	4
(v)	Horiz displacement of B: $20 \cos 60 t=10 t$ Comparison with Horiz displacement of A	$\begin{aligned} & \text { B1 } \\ & \text { E1 } \end{aligned}$	Condone unsimplified expression. Award for $20 \cos 60=10$ Comparison clear, must show $10 t$ for each or explain.	2
(vi)	vertical height is $20 \sin 60 t-0.5 \times 10 t^{2}=10 \sqrt{3} t-5 t^{2}(\mathrm{AG})$	A1	Clearly shown. Accept decimal equivalence for $10 \sqrt{3}$ (at least 3 s. f.). Accept $-5 t^{2}$ and $20 \sin 60=10 \sqrt{3}$ not explained.	1
(vii)	$\begin{aligned} & \text { Need } 10 \sqrt{3} t-5 t^{2}=12 t-5 t^{2}+9 \\ & \Rightarrow t=\frac{9}{10 \sqrt{3}-12} \\ & t=1.6915 \ldots \text { so } 1.7 \mathrm{~s}(2 \mathrm{s.f.}) \text { (AG) } \end{aligned}$	M1 A1 E1	Equating the given expressions Expression for t obtained in any form Clearly shown. Accept 3 s . f. or better as evidence. Award M1 A1 E0 for 1.7 sub in each ht	3
	total	19		

Q 8		mark		Sub
(i)	$x=14 \cos 60 t$ So $x=7 t$ $y=14 \sin 60 t-4.9 t^{2}+1$ $\begin{aligned} & y=7 \sqrt{3} t-4.9 t^{2}+1 \\ & \left(y=12.124 \ldots t-4.9 t^{2}+1\right) \end{aligned}$	M1 A1 M1 A1 A1	Consider motion in x direction. Need not resolve. Allow $\sin \leftrightarrow \cos$. Condone +1 seen. Need not be simplified. Suitable uvast used for y with g $= \pm 9.8, \pm 10, \pm 9.81 \text { soi }$ Need not resolve. Allow $\sin \leftrightarrow \cos$. Allow +1 omitted. Any form and 2 s. f. Need not be simplified All correct. +1 need not be justified. Accept any form and 2 s. f. Need not be simplified.	5
(ii) (A)	time taken to reach highest point $0=7 \sqrt{3}-9.8 T$ so $\frac{5 \sqrt{3}}{7} \mathrm{~s}(1.23717 \ldots=1.24 \mathrm{~s}(3 \mathrm{~s}$. f.))	M1	Appropriate uvast. Accept $u=14$ and $\sin \leftrightarrow \cos$ and $u \leftrightarrow v$. Require $v=0$ or equivalent. $g= \pm 9.8, \pm 10, \pm 9.81 \text { soi. }$ cao [If time of flight attempted, do not award M1 if twice interval obtained]	2
(B)	distance from base is $7 \times \frac{5 \sqrt{3}}{7}=5 \sqrt{3} \mathrm{~m}$ $\text { (= } 8.66025 \ldots \text { so } 8.66 \mathrm{~m}(3 \mathrm{s.} \text { f.)) }$	$\begin{array}{\|l} \text { M1 } \\ \text { B1 } \end{array}$	Use of their $x=7 t$ with their T FT their T only in $x=7 t$. Accept values rounding to 8.6 and 8.7.	2
(C)	either Height at this time is $H=7 \sqrt{3} \times \frac{5 \sqrt{3}}{7}-4.9 \times\left(\frac{5 \sqrt{3}}{7}\right)^{2}+1$ $=8.5$	M1 A1 A1	Subst in their quadratic y with their T. Correct subst of their T in their y which has attempts at all 3 terms. Do not accept $u=14$.	

$\left.\begin{array}{|l|l|l|l|l|} & \begin{array}{l}\text { clearance is } 8.5-6=2.5 \mathrm{~m} \\ \text { or for height above pt of projection } \\ 0=(7 \sqrt{3})^{2}+2 \times-9.8 \times s\end{array} & \text { E1 } & \text { Clearly shown. } \\ \begin{array}{ll}s=7.5 \\ \text { so clearance is } 7.5-5=2.5 \mathrm{~m}\end{array} & \begin{array}{l}\text { Appropriate } \text { uvast. Accept } u=14 . \\ g= \pm 9.8, \pm 10, \pm 9.81 \text { soi }\end{array} \\ \text { A1 } & \begin{array}{l}\text { Attempt at vert cpt accept } \sin \leftrightarrow \cos . \text { Accept } \\ \text { sign errors but not } u=14 .\end{array} & \text { E1 } & \text { Clearly shown. }\end{array}\right\}$

$\begin{array}{\|l\|} \hline \mathbf{Q} \\ \mathbf{8} \\ \hline \end{array}$	continued	mark		Su
$\begin{aligned} & \text { (iii } \\ & \hline \end{aligned}$	Elim t between $y=7 \sqrt{3} t-4.9 t^{2}+1$ and x $=7 t$ so $y=7 \sqrt{3} \frac{x}{7}-4.9\left(\frac{x}{7}\right)^{2}+1$ so $y=\sqrt{3} x-0.1 x^{2}+1$	M1 F1	Must see their $t=x / 7$ fully substituted in their quadratic y (accept bracket errors) Accept any form correctly written. FT their x and 3 term quadratic y (neither using $u=14$)	2
(iv)	either need $6=7 \sqrt{3} t-4.9 t^{2}+1$ so $4.9 t^{2}-7 \sqrt{3} t+5=0$ $t=\frac{5(\sqrt{3} \pm 1)}{7}(0.52289 \ldots$ or 1.95146...) moves by $\left(\frac{5(\sqrt{3}+1)}{7}-\frac{5 \sqrt{3}}{7}\right) \times 7$ $\begin{aligned} & {[(1.95146 . .-1.23717 \ldots) \times 7]} \\ & =5 \mathrm{~m} \end{aligned}$ or using equation of trajectory with $y=6$	M1 M1 A1 M1 A1	their quadratic y from (i) $=6$, or equivalent. Dep. Attempt to solve this 3 term quadratic. (Allow $u=14$). for either root Moves by \mid their root - their (ii) $(\mathrm{A}) \mid \times 7$ or equivalent. Award this for recognition of correct dist (no calc) cao [If new distance to wall found must have larger of 2 +ve roots for $3^{\text {rd }} \mathrm{M}$ and award max $4 / 5$ for 13.66]	

(i) $0^{2}=V^{2}-2 \times 9.8 \times 22.5$
$V=21$ so $21 \mathrm{~m} \mathrm{~s}^{-1}$
(ii) $28 \sin \theta=21$
so $\theta=48.59037$...
(iii) Time to highest point is $\frac{21}{9.8}=\frac{15}{7}$

Distance is $2 \times \frac{15}{7} \times 28 \times \cos ($ their $\theta)$..
$79.3725 \ldots$ so 79.4 m (3 s. f.)

M1 Use of appropriate uvast. Give for correct expression
E1 Clearly shown. Do not allow $v^{2}=0+2 g s$ without explanation. Accept using $V=21$ to show $s=22.5$.

M1 Attempt to find angle of projection. Allow $\sin \leftrightarrow \cos$. A1

B1 Or equivalent (time of whole flight)
M1 Valid method for horizontal distance. Accept $1 / 2$ time.
Do not accept 28 used for horizontal speed or vertical speed when calculating time.
B1 Horizontal speed correct
A1 cao. Accept answers rounding to 79 or 80 . [If angle with vertical found in (ii) allow up to full marks in (iii). If $\sin \leftrightarrow \cos$ allow up to B1 B1 M0 A1] [If $u^{2} \sin 2 \theta / g$ used then
M1* Correct formula used. FT their angle. M1 Dep on *. Correct subst. FT their angle. A2 cao]

