\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|r|}{1MA1 Practice papers Set 2: Paper 3H (Regular) mark scheme - Version 1.0} \\
\hline \& \& Working \& Answer \& Mark \& Notes \\
\hline 1. \& \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& \& \[
76
\]
\[
11.8
\] \& 3

2 \& | M1 for $89 \%=68$ |
| :--- |
| M1 for $68 \div 0.89$ (or equivalent) |
| A1 for 76-76.41 |
| M1 for $(68-60) \div 68 \times 100$ (or equivalent) |
| A1for 11.7-12 | \\

\hline 2. \& \& | 12 are red. $\frac{1}{3}$ are red $12 \times 3=$ |
| :--- |
| 2 blue for 1 red 24 blue for 12 red $24+12=$ | \& 36 \& 3 \& | M 1 for $\mathrm{P}($ red $)=\frac{1}{3}$ |
| :--- |
| M1 for $\frac{1}{3} \times 36=12$ red or 12×3 |
| A1 for 36 cao |
| OR |
| M1 for 2 blue for 1 red |
| M1 for 24 blue for 12 red or $24+12$ |
| A1 for 36 cao | \\

\hline
\end{tabular}

1MA1 Practice Papers: Set 2 Regular (3H) mark scheme - Version 1.0
This publication may only be reproduced in accordance with Pearson Education Limited copyright policy.
O2016 Pearson Education Limited.

1MA1 Practice papers Set 2: Paper 3H (Regular) mark scheme - Version 1.0					
Question		Working	Answer	Mark	Notes
7.		$\begin{aligned} & 36 \times 4(=144) \\ & 176+103+' 144 \prime(=423) \\ & 15 \times 28=420 \\ & \text { Or } \\ & ‘ 423 \prime \div 28=15.107 \ldots . \end{aligned}$	No with correct working	4	M1 for 36×4 (= 144) M1 for $176+103+$ ' 144 ' $(=423)$ M1 for 28×15 C1 (dep on at least M2 awarded) for 420 and 423 and 'No she won't have enough' Or M1 for $36 \times 4(=144)$ M1 for $176+103+' 144{ }^{\prime}(=423)$ M1 for $423 \div 28$ C1 (dep on at least M2 awarded) for 15.10 or 15.11 or 15.107... and 'No she won't have enough'
8.	(a) (b)		$7 n-4$ explanation	2 2	B2 for 7n-4 (B1 for $7 n+d$ where d is an integer) M1 for ' $7 n-4$ ' $=150$ or any other valid method, e.g. counting on 7s (to get 150) A1 for a complete explanation eg. the 22 nd term is 150 or $n=22$ from solution of equation or a clear demonstration based on 22 or complete sequence

1MA1 Practice papers Set 2: Paper 3H (Regular) mark scheme - Version 1.0					
Question		Working	Answer	Mark	Notes
10.	(a)	$\begin{aligned} & 1 / 2(3 x+1+5 x+3)(2 x+3)= \\ & 1 / 2(8 x+4)(2 x+3) \\ & \text { So, }(4 x+2)(2 x+3)-46=0 \\ & 8 x^{2}+16 x+6-46=0 \\ & 8 x^{2}+16 x-40=0 \\ & x^{2}+2 x-5=0 \end{aligned}$	Proof	3	M1 for correct method to find area of trapezium M1 (dep) for expanding all brackets to get a correct expression for the area C1 for complete correct proof
	(b)	$\begin{aligned} x & =\frac{-2 \pm \sqrt{2^{2}-4(1)(-5)}}{2 \times 1} \\ & =\frac{-2 \pm \sqrt{24}}{2} \end{aligned}$ OR $\begin{aligned} & \begin{array}{l} (x+1)^{2}-1^{2}-5 \\ =(x+1)^{2}-6 \\ x+1= \pm \sqrt{6} \end{array} \end{aligned}$	1.45, -3.45	3	M1 for $\frac{-2 \pm \sqrt{2^{2}-4(1)(-5)}}{2 \times 1}$ condone one sign error in substitution M1 for $\frac{-2 \pm \sqrt{24}}{2}$ A1for 1.44 to 1.45 (and -3.44 to -3.45) OR M1 for $(x+1)^{2}-1^{2}-5$ (or equivalent) M1 for $x+1=(\pm) \sqrt{6}$ A1 for 1.44 to 1.45 (and -3.44 to -3.45)

1MA1 Practice papers Set 2: Paper 3H (Regular) mark scheme - Version 1.0				
	Working	Answer	Mark	Notes
11.	$\begin{aligned} & \sqrt{45^{2}+20^{2}}=\sqrt{2425}=49.24 \ldots \\ & \sqrt{30^{2}+20^{2}}=\sqrt{1300}=36.05 \ldots \\ & \sqrt{45^{2}+30^{2}}=\sqrt{2925}=54.08 \ldots \\ & \sqrt{45^{2}+20^{2}+30^{2}}=\sqrt{3325} \\ & =57.66281297 \end{aligned}$ OR $\begin{aligned} & 30^{2}+20^{2}+45^{2} \\ & =900+400+2025=3325 \\ & \sqrt{3325^{\prime}}=57.66281297 \end{aligned}$	No with working	4	M1 for $45^{2}+20^{2}$ or $20^{2}+30^{2}$ or $45^{2}+30^{2}$ M1 for $\sqrt{ } 45^{2}+20^{2 \prime}$ or $\sqrt{20^{2}+30^{2 \prime}}$ or $\sqrt{45^{2}+30^{2 \prime}}$ M1 for $\sqrt{45^{2}+20^{2}+30^{21}}(=\sqrt{3325})$ C1 for No AND 57.6-57.7<60 (or equivalent) OR M2 for $30^{2}+20^{2}+45^{2}(=900+400+2025=3325)$ M1 for $\sqrt{3325^{\prime}}$ C1 for No AND 57.6-57.7<60 (or equivalent)
12	$\begin{aligned} & \left(6.21795 \cdot 10^{10}\right) \div \\ & 510072000 \\ & =121.9(03378 \ldots) \end{aligned}$	$1.22 \cdot 10^{2}$	3	```M1 for SA Jupiter \(\div\) SA Earth e.g. (\(\left.6.21795 \cdot 10^{10}\right) \div 510072000\) (or equivalent), e.g. \(62000 \div 51\) or digits \(121 \ldots\) or digits 122 A1 for \(121-122\) A1 for \(1.21 \cdot 10^{2}-1.22 \cdot 10^{2}\)```

1MA1 Practice papers Set 2: Paper 3H (Regular) mark scheme - Version 1.0				
	Working	Answer	Mark	Notes
13.		Yes with appropriate reason	4	M1 for writing $l \propto \frac{1}{d^{2}}$ or $l=\frac{k}{d^{2}}$ M1 for substituting to find value of $k(k=2500)$ M1 for substituting 5.4 to get $l=\frac{2500}{5.4^{2}}$ or substituting 85 to get $85=\frac{2500}{d^{2}}$ C1 (Dep on M1 for yes and the number of decibels is $85.7(3 \ldots)$ which is more than 85 or distance is 5.42 m which is more than 5.4 m
14.	73-26	47	3	M1 for a complete method A1 B1 Alternate segment theorem
15.	$\begin{aligned} & 12 \times 20+10.8 \times 10+7 \times 15+5 \times \\ & 15+1.8 \times 30+0.6 \times 30 \\ & =240+108+105+75+54+18 \\ & =528+72=600 \end{aligned}$	12\%	3	M1 for attempt to work out total area (e.g. $=600$) or area greater than 60 (e.g. $=72$) by using fd or counting squares M1 (dep) for $\frac{{ }^{\prime} 72^{\prime}}{{ }^{600}} \times 100$ (or equivalent) $(=12)$ A1 cao (must have \% otherwise 2 marks)

1MA1 Practice papers Set 2: Paper 3H (Regular) mark scheme - Version 1.0					
		Working	Answer	Mark	Notes
16.		$\begin{aligned} & 2^{\frac{n}{2}}=\frac{2^{x}}{\left(2^{3}\right)^{y}} \\ & 2^{\frac{n}{2}}=2^{x-3 y} \end{aligned}$	$n=2 x-6 y$	3	M1 for writing 8 as 2^{3} or $2^{\frac{n}{2}}$ M1 for $2^{x-3 y}$ or $\frac{1}{2} n=x-3 y$ A1 for $n=2(x-3 y)$ or $n=(x-3 y) \mid 0.5$
17.	(a) (b)	$\begin{aligned} & \overrightarrow{O P}=\overrightarrow{O A}+\overrightarrow{A P} \\ & \overrightarrow{A P}=\frac{3}{4} \times(\mathbf{b}-\mathbf{a}) \\ & \overrightarrow{O P}=\mathbf{a}+\frac{3}{4} \times(\mathbf{b}-\mathbf{a}) \end{aligned}$ OR $\begin{aligned} & \overrightarrow{O P}=\overrightarrow{O B}+\overrightarrow{B P} \\ & \overrightarrow{B P}=\frac{1}{4} \times(\mathbf{a}-\mathbf{b}) \\ & \overrightarrow{O P}=\mathbf{b}+\frac{1}{4} \times(\mathbf{a}-\mathbf{b}) \end{aligned}$	$\begin{gathered} \mathbf{b}-\mathbf{a} \\ \frac{1}{4}(\mathbf{a}+3 \mathbf{b}) \end{gathered}$	$\begin{aligned} & \hline 1 \\ & 3 \end{aligned}$	B1 for $\mathbf{b}-\mathbf{a}$ or $-\mathbf{a}+\mathbf{b}$ B1 for $\frac{3}{4} \times{ }^{\prime}(\mathbf{b}-\mathbf{a})^{\prime}$ M1 for $\left(\overrightarrow{O P}=\overrightarrow{O A}+\overrightarrow{A P}\right.$ or $(\overrightarrow{O P}=) \overrightarrow{O A}+\frac{3}{4} \overrightarrow{A B}$ or $\mathbf{a} \pm \frac{3}{4} \times{ }^{\prime}(\mathbf{b}-\mathbf{a})^{\prime}$ A1 for $\frac{1}{4}(\mathbf{a}+3 \mathbf{b})$ or $\frac{1}{4} \mathbf{a}+\frac{3}{4} \mathbf{b}$ OR B1 for $\frac{1}{4} \times{ }^{\prime}(\mathbf{a}-\mathbf{b})$ ' M1 for $\left(\overrightarrow{O P}=\overrightarrow{O B}+\overrightarrow{B P}\right.$ or $(\overrightarrow{O P}=) \overrightarrow{O B}+\frac{1}{4} \overrightarrow{B A}$ or $\mathbf{b} \pm \frac{1}{4} \times{ }^{\prime}(\mathbf{a}-\mathbf{b})$, A1 for $\frac{1}{4}(\mathbf{a}+3 \mathbf{b})$ or $\frac{1}{4} \mathbf{a}+\frac{3}{4} \mathbf{b}$

1MA1 Practice papers Set 2: Paper 3H (Regular) mark scheme - Version 1.0					
Question		Working	Answer	Mark	Notes
21.	(a)	$l^{2}=12^{2}+4^{2}$	159	3	M1 for $l^{2}=12^{2}+4^{2}$
		$\pi \cdot 4 \cdot \sqrt{ }\left(12^{2}-4^{2}\right)$ or			M1 for a correct expression of the curved surface area
		$\pi \cdot 4 \cdot \sqrt{ } 160$			
		$\pi \cdot 4 \cdot 12.6(4911 \ldots)$ or			A1 (accept in range 158-159)
		50.56π or			
		$\frac{1264}{25} \pi$			
	(b)	$\frac{12-h}{r}=\frac{12}{4} \text { or } 4(12-h)=12 r$	$\begin{gathered} V= \\ 12 \pi r^{2}-3 \pi r^{3} \end{gathered}$	3	M1
		or $\frac{h}{12}=\frac{4-r}{4}$ or $4: 12=r: 12-h$			M1 $h=3 r$
				A1	cso

National performance data from Results Plus

	Source of questions				Topic	Max score	$\begin{aligned} & \hline \text { Mean } \\ & \% \text { all } \end{aligned}$		Mean score of students achieving grade:					
$\begin{aligned} & \text { Qu } \\ & \text { No } \end{aligned}$	Spec	Paper	Session	Qu				ALL	A*	A	B	C	D	E
1	1MA0	2H	1511	Q14	Percentages	5	14	0.69	3.66	2.79	1.91	0.84	0.38	0.13
2	5AM2	2F	1211	Q22	Probability	3	28	0.83				1.66	0.78	0.36
3				NEW	Algebraic proof	1		No data available						
4	4MA0(R)	1F	1501	Q19	Fractions	3	53	1.59				2.09	1.46	0.00
5				NEW	Rearranging equations	3		No data available						
6	5AM2	2H	1411	Q12	Solve inequalities	5	66	3.30	5.00	4.50	4.25	2.71	1.79	0.00
7	5AM1	1H	1506	Q12	Compound interest	5	59	2.96	4.60	3.72	3.04	1.99	0.85	0.43
8	1MA0	2 H	1311	Q08	Number sequences	4	58	2.30	3.84	3.46	2.87	2.03	1.28	0.82
9	4MA0	1H	1601	Q13	Mean, median, mode	5	39	1.94	3.47	2.03	1.21	0.74	0.41	0.24
10	5MM2	2 H	1406	Q26	Solve quadratic equations	6	42	2.54	5.73	4.65	2.27	0.63	0.12	0.03
11	5AM2	2 H	1211	Q20	Pythagoras in 3D	4	36	1.42	3.80	2.89	1.68	0.61	0.02	0.00
12	1380	2 H	1106	Q19	Standard form	3	31	0.94	2.66	1.72	0.75	0.23	0.06	0.03
13	5AM2	2 H	1506	Q19	Direct and indirect proportion	4	31	1.25	3.19	2.13	0.82	0.11	0.02	0.00
14	4MA0	1H	1601	Q17b	Circle theorems	3	37	1.12	2.22	1.21	0.57	0.17	0.04	0.03
15	1MA0	2 H	1311	Q27	Histograms and grouped frequency	3	23	0.68	2.42	1.75	0.90	0.21	0.06	0.05
16	4MA0	2 H	1405	Q24	Solve linear equations	3	18	0.55	1.08	0.30	0.13	0.05	0.02	0.01
17	1MA0	2 H	1206	Q26	Vectors	4	18	0.73	3.16	1.62	0.57	0.12	0.02	0.01
18	2540	2 H	806	Q25	Graphs of exponential functions	3	12	0.36	1.81	0.57	0.10	0.03	0.01	0.02
19	1MA0	2 H	1311	Q25	Gradients	3	10	0.29	1.86	0.83	0.21	0.02	0.00	0.00
20	4MA0	1H	1601	Q20	Sine and cosine rule	4	43	1.73	3.42	2.20	0.70	0.10	0.01	0.00
21	4MA0(R)	1H	1601	Q15ab	Volume and surface area	6	64	2.90	3.81	2.43	1.75	1.17	0.14	0.60
						80								

