1MA1 Practice papers Set 2: Paper 2H (Regular) mark scheme - Version 1.0					
	tion	Working	Answer	Mark	Notes
1.			187	3	$\begin{aligned} & \text { M1 } 1500 \div(100 \times 100)(=0.15) \\ & \text { M1 } 28 \div " 0.15 " \\ & \text { A1 } \end{aligned}$
2.	(i) (ii)		24 50 75 600	4	M1 for listing at least three multiples for any two of $25,12,8$ M1 for listing at least three multiples for all of 25, 12, 8 A1 for $24,50,75$ cao OR M1 for prime factorisation for any two of $25,12,8$, eg in a factor tree M1 for prime factorisation for all of $25,12,8$ or $2 \times 2 \times 2 \times 3 \times 5 \times 5$ A1 cao (SC B2 for $24 k, 50 k, 75 k$) B1 for 600 (or ft $600 k$)

1MA1 Practice Papers: Set 2 Regular (2H) mark scheme - Version 1.0
This publication may only be reproduced in accordance with Pearson Education Limited copyright policy.
©2016 Pearson Education Limited.

1MA1 Practice papers Set 2: Paper 2H (Regular) mark scheme - Version 1.0				
	Working	Answer	Mark	Notes
3.	$\begin{aligned} & 8.4^{2}+8.4^{2} \\ & \sqrt{70.56+70.56}=\sqrt{141.12} \end{aligned}$	11.9 cm	3	M1 $8.4^{2}+8.4^{2}$ (or equivalent) M1 $\sqrt{70.56+70.56}$ or $\sqrt{141.12}$ A1 $11.85-11.9$
4.	$\begin{aligned} & \frac{3}{4} \times 120=90, \\ & \frac{1}{4} \times 120=30 \\ & \frac{2}{3} \times 90=60, \\ & \frac{20}{100} \times 30=6 \\ & 60: 6 \end{aligned}$	10:1	5	M1 for $\frac{3}{4} \times 120$ (or equivalent) or 90 or $\frac{1}{4} \times 120$ (or equivalent) or 30 M2 (indep) for $\left(1-\frac{1}{3}\right) \times{ }^{\prime} 90^{\prime}$ (or equivalent) (or 60) AND $\frac{100-80}{100 \times 30}$ (or equivalent) (or 6) (M1 (indep) for $\left(1-\frac{1}{3}\right) \cdot{ }^{\prime} 90^{\prime}$ (or equivalent) or 60 OR $\frac{100-80}{100 \times 30}$ (or equivalent) or 6 OR both $\frac{1}{3} \times 90(=30)$ and $\frac{80}{100} \cdot 30(=24)$ M1 (dep on at least M2) for ' 60 ' : ' 6 ' or 1 to 10 or 6 to 60 (or equivalent) or reversed ratio $6: 60$ A1 10:1 cao

1MA1 Practice papers Set 2: Paper 2H (Regular) mark scheme - Version 1.0				
	Working	Answer	Mark	Notes
5.	$\begin{aligned} & \pi(6)^{2}-\pi(5)^{2} \\ & =113(.09 \ldots)-78.5(39 \ldots) \\ & =34.55751919 \end{aligned}$	34.6	3	M1 for $\pi(6)^{2}$ (or equivalent) or $\pi(5)^{2}$ (or equivalent) or $113 \ldots$ or 78.5... M1 for $\pi(6)^{2}-\pi(5)^{2}$ (or equivalent) A1 for 34.5-34.6
6.	$a=\operatorname{cost}(\mathrm{p})$ of an apple $p=\operatorname{cost}(\mathrm{p})$ of a pear $3 a+4 p=184$ $5 a+2 p=176$ $7 a=2 \times 176-184=168$	24,28	4	B1 $3 a+4 p=184$ and $5 a+2 p=176$ (or equivalent) M1 correct process to eliminate a or p M1 (dep on M1) substitute found value of a or p to find other variable A1 cao
7.	$\begin{aligned} & \tan x=14 \div 7.5=1.8666 \ldots \\ & \tan ^{-1} 1.8666 \ldots \end{aligned}$	62	3	M1 for $\tan x=14 \div 7.5(=1.86666 \ldots)$ M1 for $\tan ^{-1}(14 \div 7.5)$ A1 for answer in the range 61.7 to 62

1MA1 Practice papers Set 2: Paper 2H (Regular) mark scheme - Version 1.0				
	Working	Answer	Mark	Notes
9.		$\begin{gathered} x=130 \\ + \text { correct reasons } \end{gathered}$	4	M1 for angle $B F G=65$ may be seen on diagram M1 (dep) for correct method to calculate x, eg ($x=$) $65+65$ $(=130) \text { or }(x=) 180-(180-2 \times 65)(=130)$ C2 for $x=130$ and full appropriate reasons related to method shown (C1 (dep on M1) for any one appropriate reason related to method shown) eg alternate angles; base angles in an isosceles triangle are equal; angles in a triangle add up to 180°; angles on a straight line add up to 180°; exterior angle of triangle $=$ sum of two interior opposite angles; co-interior angles add up to 180° (allied angles) NB Any reasons stated must be used
10.	$\begin{aligned} & 5 \times(360 \div 12)(=150) \\ & \left(A B^{2}=\right) 10^{2}+7^{2}-2 \cdot 10 \cdot \\ & 7 \cdot \cos (" 150 ") \\ & \left(A B^{2}=\right) \\ & 149-140 \cos (" 150 ") \\ & \left(A B^{2}=\right) 270.24 \ldots \end{aligned}$	16.4	4	M1 Angle $A O B$. M1 Accept the use of the cosine rule with any angle but sides (10 and 7) must be in correct places. A1 (awrt) 270 A1 (awrt) 16.4

1MA1 Practice papers Set 2: Paper 2H (Regular) mark scheme - Version 1.0				
	Working	Answer	Mark	Notes
12.	$\begin{aligned} & \text { e.g. } 70 \%=17920 \\ & 1 \%=\frac{17920}{70}(=256) \\ & 100 \%=\frac{17920}{70} \cdot 100 \end{aligned}$	25600	3	M1 $100 \%-30 \%, \quad$ or 70% or $1-0.3$ or 0.7 M1 for $\frac{17920}{70} \cdot 100$ or $\frac{17920}{0.7}$ A1 cao
13.		$\frac{17}{40}$	3	M1 $\frac{4}{5} \cdot \frac{3}{8}$ or $\frac{1}{5} \cdot \frac{5}{8}$ or $\frac{12}{40}$ or $\frac{5}{40}$ M1 $\frac{4}{5} \cdot \frac{3}{8}+\frac{1}{5} \cdot \frac{5}{8}$ A1 $\frac{17}{40}$ (or equivalent)

1MA1 Practice papers Set 2: Paper 2H (Regular) mark scheme - Version 1.0					
	tion	Working	Answer	Mark	Notes
15.	(a) (b)		$y=\mathrm{f}(x-5)$ $(4,3)$	1 2	B1 cao B2 cao (B1 for one coord. correct (in correct position) or $(3,4)$.)
16.		$\begin{aligned} & x=0.0151515 \ldots \\ & 1000 x=15.151515 \ldots \\ & 10 x=0.151515 \ldots \\ & 990 x=15 \\ & x=\frac{15}{990}=\frac{1}{66} \\ & \text { OR } \\ & 100 x=1.51515 \ldots \\ & x=0.01515 \ldots 99 x=1.5 \\ & x=\frac{1.5}{99} \\ & =\frac{15}{990}=\frac{1}{66} \end{aligned}$	Proof	3	M1 for $\quad(x=) 0.0151515(\ldots) \quad$ or $\quad 1000 x=5.151515(\ldots)$ or $00 x=1.51515(\ldots) \quad$ or $\quad 10 x=0.151515(\ldots)$ M1 for two recurring decimals the difference of which is a rational number C1 (dep on M2 scored) for completing the proof by subtracting and cancelling to give a correct fraction

1MA1 Practice papers Set 2: Paper 2H (Regular) mark scheme - Version 1.0				
	Working	Answer	Mark	Notes
17.	$\begin{aligned} & P=\frac{k}{x^{2}} \\ & 6=\frac{k}{5^{2}} \quad(k=150) \\ & P=\frac{150}{8^{2}} \end{aligned}$	2.34	3	M1 for $P=\frac{k}{x^{2}}$ or $P \propto \frac{1}{x^{2}}$ M1 for $6=\frac{k}{5^{2}}$ or $(k=) 150$ seen or $6 \times 5^{2}=P \times 8^{2}$ A1 2.34
18.		11	3	M1 for tangent drawn at $t=2$ M1 (dep) for $\frac{\text { diff } y}{\text { diff } x} \mathrm{ft}$ from tangent A1 for answer in range $9-14$
19.		Yes, average speed could have been as high as 80.622...	5	B1 for 4535 or $4534.999 \ldots$ or 202.5 M1 for 4535 ((or equivalent)) $\div 202.5$ M1 for $\times 3600$ and $\div 1000$ A1 for 80.622... C1 (dep on first M1) for correct conclusion from their calculations

Practice Papers Set 2 2H: National performance data from Results Plus

	Source of questions				Topic	Max score	Mean \% all	ALL	Mean score of students achieving grade:					
$\begin{aligned} & \text { Qu } \\ & \text { No } \end{aligned}$	Spec	Paper	Session YYMM	Qu					A*	A	B	C	D	E
1				NEW	Compound measures	3								
2	5AM1	1H	1506	Q13	Factors, multiples, primes	4	63	2.51	3.68	3.26	2.58	1.71	0.81	0.36
3	5MM2	2 F	1206	Q27	Pythagoras in 2D	3	11	0.34				1.21	0.34	0.08
4	5MM2	2H	1111	Q06	Ratio	5	60	3.02	4.53	3.91	3.32	2.15	1.26	1.33
5	1380	2H	1106	Q05	Area of a circle	3	59	1.78	2.97	2.77	2.03	0.92	0.24	0.07
6	5AM1	1H	1406	Q11	Simultaneous equations	4	71	2.83	3.93	3.83	3.26	1.94	0.67	0.13
7	5MM2	2 H	1306	Q15	Trigonometry	3	56	1.68	2.94	2.65	1.80	0.81	0.16	0.00
8	5AM1	1H	1506	Q14	Solve linear equations	6	54	3.23	5.74	4.93	3.24	1.20	0.37	0.21
9	1MA0	1H	1411	Q08	Angles	4	24	0.95	3.31	2.82	2.05	1.02	0.42	0.13
10	4MA0	2H	1401	Q17	Sine and cosine rule	4	49	1.96	3.63	2.48	0.96	0.22	0.01	0.00
11	1MA0	1H	1411	Q16	Cumulative frequency diagrams	4	47	1.88	3.76	3.40	2.88	2.07	1.39	0.89
12	5MM2	2 H	1111	Q11	Reverse percentages	3	48	1.43	2.86	2.57	1.47	0.77	0.08	0.00
13	5AM2	2H	1311	Q21	Selection with or without replacement	3	44	1.32	2.74	2.06	1.47	0.59	0.22	0.00
14	5MM2	2H	1406	Q26	Solve quadratic equations	6	42	2.54	5.73	4.65	2.27	0.63	0.12	0.03
15	1380	2H	1006	Q27	Transformation of functions	3	29	0.88	2.22	1.28	0.68	0.46	0.29	0.20
16	5MM2	2 H	1306	Q20	Recurring decimals	3	25	0.75	2.16	1.19	0.53	0.18	0.05	0.02
17	5MM2	2 H	1111	Q23	Direct and indirect proportion	3	20	0.60	2.72	1.37	0.25	0.07	0.00	0.00
18	5AM2	2H	1111	Q23	Gradients as rate of change	3	14	0.43	3.00	1.14	0.30	0.00	0.00	0.00
19	1MA0	2H	1411	Q23	Compound measures	5	4	0.19	3.30	1.57	0.38	0.03	0.00	0.00
20				NEW	Quadratic sequences	3								
21				NEW	Functions	5								
						80								

