1. A particle P moves on the x-axis. The acceleration of P at time t seconds, $t \geq 0$, is (3t+5) $\mathrm{m} \mathrm{s}^{-2}$ in the positive x-direction. When $t=0$, the velocity of P is $2 \mathrm{~ms}^{-1}$ in the positive x-direction. When $t=T$, the velocity of P is $6 \mathrm{~m} \mathrm{~s}^{-1}$ in the positive x-direction. Find the value of T.
(Total 6 marks)
2. A particle P moves along the x-axis. At time t seconds the velocity of P is $v \mathrm{~m} \mathrm{~s}^{-1}$ in the positive x-direction, where $v=3 t^{2}-4 t+3$. When $t=0, P$ is at the origin O. Find the distance of P from O when P is moving with minimum velocity.
(Total 8 marks)
3. At time $t=0$ a particle P leaves the origin O and moves along the x-axis. At time t seconds the velocity of P is $\mathrm{v} \mathrm{m} \mathrm{s}^{-1}$, where

$$
v=8 t-t^{2}
$$

(a) Find the maximum value of v.
(b) Find the time taken for P to return to O.
4. A particle P moves along the x-axis in a straight line so that, at time t seconds, the velocity of P is $v \mathrm{~m} \mathrm{~s}^{-1}$, where

$$
v=\left\{\begin{array}{cc}
10 t-2 t^{2}, & 0 \leq t \leq 6 \\
\frac{-432}{t^{2}}, & t>6
\end{array}\right.
$$

At $t=0, P$ is at the origin O. Find the displacement of P from O when
(a) $t=6$,
(b) $t=10$.
5. A particle P moves on the x-axis. At time t seconds the velocity of P is $v \mathrm{~m} \mathrm{~s}^{-1}$ in the direction of x increasing, where v is given by

$$
v= \begin{cases}8 t-\frac{3}{2} t^{2}, & 0 \leq t \leq 4 \\ 16-2 t, & t>4\end{cases}
$$

When $t=0, P$ is at the origin O.

Find
(a) the greatest speed of P in the interval $0 \leq t \leq 4$,
(b) the distance of P from O when $t=4$,
(3)
(c) the time at which P is instantaneously at rest for $t>4$,
(d) the total distance travelled by P in the first 10 s of its motion.
6. A particle P moves on the x-axis. At time t seconds, its acceleration is $(5-2 t) \mathrm{m} \mathrm{s}^{-2}$, measured in the direction of x increasing. When $t=0$, its velocity is $6 \mathrm{~m} \mathrm{~s}^{-1}$ measured in the direction of x increasing. Find the time when P is instantaneously at rest in the subsequent motion.
(Total 6 marks)
7. A cricket ball of mass 0.5 kg is struck by a bat. Immediately before being struck, the velocity of the ball is $(-30 \mathbf{i}) \mathrm{m} \mathrm{s}^{-1}$. Immediately after being struck, the velocity of the ball is $(16 \mathbf{i}+20 \mathbf{j}) \mathrm{m} \mathrm{s}^{-1}$.
(a) Find the magnitude of the impulse exerted on the ball by the bat.

In the subsequent motion, the position vector of the ball is \mathbf{r} metres at time t seconds. In a model of the situation, it is assumed that $\mathbf{r}=\left[16 \mathbf{i}+\left(20 t-5 t^{2}\right) \mathbf{j}\right]$. Using this model,
(b) find the speed of the ball when $t=3$.
8. A particle P of mass 0.4 kg is moving so that its position vector \mathbf{r} metres at time t seconds is given by

$$
\mathbf{r}=\left(t^{2}+4 t\right) \mathbf{i}+\left(3 t-t^{3}\right) \mathbf{j}
$$

(a) Calculate the speed of P when $t=3$.

When $t=3$, the particle P is given an impulse $(8 \mathbf{i}-12 \mathbf{j}) \mathrm{N} \mathrm{s}$.
(b) Find the velocity of P immediately after the impulse.
9. A particle P moves in a horizontal plane. At time t seconds, the position vector of P is \mathbf{r} metres relative to a fixed origin O, and \mathbf{r} is given by

$$
\mathbf{r}=\left(18 t-4 t^{3}\right) \mathbf{i}+c t^{2} \mathbf{j}
$$

where c is a positive constant. When $t=1.5$, the speed of P is $15 \mathrm{~m} \mathrm{~s}^{-1}$. Find
(a) the value of c,
(b) the acceleration of P when $t=1.5$.
10. At time t seconds, the velocity of a particle P is $[(4 t-7) \mathbf{i}-5 \mathbf{j}] \mathrm{m} \mathrm{s}^{-1}$. When $t=0, P$ is at the point with position vector $(3 \mathbf{i}+5 \mathbf{j}) \mathrm{m}$ relative to a fixed origin O.
(a) Find an expression for the position vector of P after t seconds, giving your answer in the form $(a \mathbf{i}+b \mathbf{j}) \mathrm{m}$.

A second particle Q moves with constant velocity $(2 \mathbf{i}-3 \mathbf{j}) \mathrm{m} \mathrm{s}^{-1}$. When $t=0$, the position vector of Q is $(-7 \mathbf{i}) \mathrm{m}$.
(b) Prove that P and Q collide.
11. A particle P moves on the x-axis. At time t seconds the velocity of P is $v \mathrm{~m} \mathrm{~s}^{-1}$ in the direction of x increasing, where $v=6 t-2 t^{2}$. When $t=0, P$ is at the origin O. Find the distance of P from O when P comes to instantaneous rest after leaving O.
(Total 5 marks)
12. A particle P moves on the x-axis. The acceleration of P at time t seconds is $(4 t-8) \mathrm{m} \mathrm{s}^{-2}$, measured in the direction of x increasing. The velocity of P at time t seconds is $v \mathrm{~m} \mathrm{~s}^{-1}$. Given that $v=6$ when $t=0$, find
(a) v in terms of t,
(b) the distance between the two points where P is instantaneously at rest.
(Total 11 marks)

