Section B (36 marks)

7 When a light ray passes from air to glass, it is deflected through an angle. The light ray ABC starts at point $\mathrm{A}(1,2,2)$, and enters a glass object at point $\mathrm{B}(0,0,2)$. The surface of the glass object is a plane with normal vector \mathbf{n}. Fig. 7 shows a cross-section of the glass object in the plane of the light ray and \mathbf{n}.

Fig. 7
(i) Find the vector $\overrightarrow{\mathrm{AB}}$ and a vector equation of the line AB .

The surface of the glass object is a plane with equation $x+z=2$. AB makes an acute angle θ with the normal to this plane.
(ii) Write down the normal vector \mathbf{n}, and hence calculate θ, giving your answer in degrees.

The line BC has vector equation $\mathbf{r}=\left(\begin{array}{l}0 \\ 0 \\ 2\end{array}\right)+\mu\left(\begin{array}{l}-2 \\ -2 \\ -1\end{array}\right)$. This line makes an acute angle ϕ with the
normal to the plane.
(iii) Show that $\phi=45^{\circ}$.
(iv) Snell's Law states that $\sin \theta=k \sin \phi$, where k is a constant called the refractive index. Find k.

The light ray leaves the glass object through a plane with equation $x+z=-1$. Units are centimetres.
(v) Find the point of intersection of the line BC with the plane $x+z=-1$. Hence find the distance the light ray travels through the glass object.

[Question 8 is printed overleaf.]

OCR
 RECOGNISING ACHIEVEMENT

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations, is given to all schools that receive assessment material and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.
If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.
For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1PB.
OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

8 Archimedes, about 2200 years ago, used regular polygons inside and outside circles to obtain approximations for π.
(i) Fig. 8.1 shows a regular 12 -sided polygon inscribed in a circle of radius 1 unit, centre O . AB is one of the sides of the polygon. C is the midpoint of AB . Archimedes used the fact that the circumference of the circle is greater than the perimeter of this polygon.

Fig. 8.1
(A) Show that $\mathrm{AB}=2 \sin 15^{\circ}$.
(B) Use a double angle formula to express $\cos 30^{\circ}$ in terms of $\sin 15^{\circ}$. Using the exact value of $\cos 30^{\circ}$, show that $\sin 15^{\circ}=\frac{1}{2} \sqrt{2-\sqrt{3}}$.
(C) Use this result to find an exact expression for the perimeter of the polygon.

Hence show that $\pi>6 \sqrt{2-\sqrt{3}}$.
(ii) In Fig. 8.2, a regular 12-sided polygon lies outside the circle of radius 1 unit, which touches each side of the polygon. F is the midpoint of DE. Archimedes used the fact that the circumference of the circle is less than the perimeter of this polygon.

Fig. 8.2
(A) Show that $\mathrm{DE}=2 \tan 15^{\circ}$.
(B) Let $t=\tan 15^{\circ}$. Use a double angle formula to express $\tan 30^{\circ}$ in terms of t.

Hence show that $t^{2}+2 \sqrt{3} t-1=0$.
(C) Solve this equation, and hence show that $\pi<12(2-\sqrt{3})$.
(iii) Use the results in parts $(\mathbf{i})(C)$ and $(\mathbf{i i})(C)$ to establish upper and lower bounds for the value of π, giving your answers in decimal form.

