PMT

Section B (36 marks)

8 The upper and lower surfaces of a coal seam are modelled as planes ABC and DEF, as shown in Fig. 8. All dimensions are metres.

Fig. 8

Relative to axes Ox (due east), Oy (due north) and Oz (vertically upwards), the coordinates of the points are as follows.

A: (0, 0, -15) B: (100, 0, -30) C: (0, 100, -25) D: (0, 0, -40) E: (100, 0, -50) F: (0, 100, -35)

- (i) Verify that the cartesian equation of the plane ABC is 3x + 2y + 20z + 300 = 0. [3]
- (ii) Find the vectors \overrightarrow{DE} and \overrightarrow{DF} . Show that the vector $2\mathbf{i} \mathbf{j} + 20\mathbf{k}$ is perpendicular to each of these vectors. Hence find the cartesian equation of the plane DEF. [6]
- (iii) By calculating the angle between their normal vectors, find the angle between the planes ABC and DEF. [4]

It is decided to drill down to the seam from a point R (15, 34, 0) in a line perpendicular to the upper surface of the seam. This line meets the plane ABC at the point S.

(iv) Write down a vector equation of the line RS.

Calculate the coordinates of S.

[5]

PMT

[4]

[4]

9

A skydiver drops from a helicopter. Before she opens her parachute, her speed $v \,\mathrm{m \, s^{-1}}$ after time *t* seconds is modelled by the differential equation

$$\frac{\mathrm{d}v}{\mathrm{d}t} = 10\mathrm{e}^{-\frac{1}{2}t}$$

When t = 0, v = 0.

- (i) Find v in terms of t.
- (ii) According to this model, what is the speed of the skydiver in the long term? [2]

She opens her parachute when her speed is 10 m s^{-1} . Her speed *t* seconds after this is $w \text{ m s}^{-1}$, and is modelled by the differential equation

$$\frac{\mathrm{d}w}{\mathrm{d}t} = -\frac{1}{2}(w-4)(w+5)$$

(iii) Express $\frac{1}{(w-4)(w+5)}$ in partial fractions.

(iv) Using this result, show that
$$\frac{w-4}{w+5} = 0.4e^{-4.5t}$$
. [6]

(v) According to this model, what is the speed of the skydiver in the long term? [2]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.