Section B (36 marks)

7 Data suggest that the number of cases of infection from a particular disease tends to oscillate between two values over a period of approximately 6 months.
(a) Suppose that the number of cases, P thousand, after time t months is modelled by the equation $P=\frac{2}{2-\sin t}$. Thus, when $t=0, P=1$.
(i) By considering the greatest and least values of $\sin t$, write down the greatest and least values of P predicted by this model.
(ii) Verify that P satisfies the differential equation $\frac{\mathrm{d} P}{\mathrm{~d} t}=\frac{1}{2} P^{2} \cos t$.
(b) An alternative model is proposed, with differential equation

$$
\begin{equation*}
\frac{\mathrm{d} P}{\mathrm{~d} t}=\frac{1}{2}\left(2 P^{2}-P\right) \cos t \tag{*}
\end{equation*}
$$

As before, $P=1$ when $t=0$.
(i) Express $\frac{1}{P(2 P-1)}$ in partial fractions.
(ii) Solve the differential equation (*) to show that

$$
\begin{equation*}
\ln \left(\frac{2 P-1}{P}\right)=\frac{1}{2} \sin t \tag{5}
\end{equation*}
$$

This equation can be rearranged to give $P=\frac{1}{2-\mathrm{e}^{\frac{1}{2} \sin t}}$.
(iii) Find the greatest and least values of P predicted by this model.

Fig. 8
In a theme park ride, a capsule C moves in a vertical plane (see Fig. 8). With respect to the axes shown, the path of C is modelled by the parametric equations

$$
x=10 \cos \theta+5 \cos 2 \theta, \quad y=10 \sin \theta+5 \sin 2 \theta, \quad(0 \leqslant \theta<2 \pi)
$$

where x and y are in metres.
(i) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{\cos \theta+\cos 2 \theta}{\sin \theta+\sin 2 \theta}$.

Verify that $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ when $\theta=\frac{1}{3} \pi$. Hence find the exact coordinates of the highest point A on the path of C .
(ii) Express $x^{2}+y^{2}$ in terms of θ. Hence show that

$$
\begin{equation*}
x^{2}+y^{2}=125+100 \cos \theta \tag{4}
\end{equation*}
$$

(iii) Using this result, or otherwise, find the greatest and least distances of C from O .

You are given that, at the point B on the path vertically above O ,

$$
2 \cos ^{2} \theta+2 \cos \theta-1=0
$$

(iv) Using this result, and the result in part (ii), find the distance OB. Give your answer to 3 significant figures.

