4

Section B (36 marks)
6 Fig. 6 shows the arch ABCD of a bridge.

Fig. 6
The section from B to C is part of the curve OBCE with parametric equations

$$
x=a(\theta-\sin \theta), y=a(1-\cos \theta) \text { for } 0 \leqslant \theta \leqslant 2 \pi,
$$

where a is a constant.
(i) Find, in terms of a,
(A) the length of the straight line OE,
(B) the maximum height of the arch.
(ii) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of θ.

The straight line sections AB and CD are inclined at 30° to the horizontal, and are tangents to the curve at B and C respectively. BC is parallel to the x-axis. BF is parallel to the y-axis.
(iii) Show that at the point B the parameter θ satisfies the equation

$$
\sin \theta=\frac{1}{\sqrt{3}}(1-\cos \theta) .
$$

Verify that $\theta=\frac{2}{3} \pi$ is a solution of this equation.
Hence show that $\mathrm{BF}=\frac{3}{2} a$, and find OF in terms of a, giving your answer exactly.
(iv) Find BC and AF in terms of a.

Given that the straight line distance AD is 20 metres, calculate the value of a.

5
7

Fig. 7
Fig. 7 illustrates a house. All units are in metres. The coordinates of A, B, C and E are as shown. BD is horizontal and parallel to AE.
(i) Find the length AE .
(ii) Find a vector equation of the line BD . Given that the length of BD is 15 metres, find the coordinates of D .
(iii) Verify that the equation of the plane ABC is

$$
-3 x+4 y+5 z=30
$$

Write down a vector normal to this plane.
(iv) Show that the vector $\left(\begin{array}{l}4 \\ 3 \\ 5\end{array}\right)$ is normal to the plane ABDE. Hence find the equation of the plane ABDE .
(v) Find the angle between the planes ABC and ABDE .

