6 A curve has cartesian equation $y^{2}-x^{2}=4$.
(i) Verify that

$$
\begin{equation*}
x=t-\frac{1}{t}, \quad y=t+\frac{1}{t} \tag{2}
\end{equation*}
$$

are parametric equations of the curve.
(ii) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(t-1)(t+1)}{t^{2}+1}$. Hence find the coordinates of the stationary points of the curve.

Section B (36 marks)

7 In a chemical process, the mass M grams of a chemical at time t minutes is modelled by the differential equation

$$
\frac{\mathrm{d} M}{\mathrm{~d} t}=\frac{M}{t\left(1+t^{2}\right)}
$$

(i) Find $\int \frac{t}{1+t^{2}} \mathrm{~d} t$.
(ii) Find constants A, B and C such that

$$
\begin{equation*}
\frac{1}{t\left(1+t^{2}\right)}=\frac{A}{t}+\frac{B t+C}{1+t^{2}} . \tag{5}
\end{equation*}
$$

(iii) Use integration, together with your results in parts (i) and (ii), to show that

$$
M=\frac{K t}{\sqrt{1+t^{2}}},
$$

where K is a constant.
(iv) When $t=1, M=25$. Calculate K.

What is the mass of the chemical in the long term?

8 A computer-controlled machine can be programmed to make cuts by entering the equation of the plane of the cut, and to drill holes by entering the equation of the line of the hole.

A $20 \mathrm{~cm} \times 30 \mathrm{~cm} \times 30 \mathrm{~cm}$ cuboid is to be cut and drilled. The cuboid is positioned relative to x-, y and z-axes as shown in Fig. 8.1.

Fig. 8.1

Fig. 8.2

First, a plane cut is made to remove the corner at E . The cut goes through the points P, Q and R , which are the midpoints of the sides ED, EA and EF respectively.
(i) Write down the coordinates of P, Q and R .

$$
\text { Hence show that } \overrightarrow{\mathrm{PQ}}=\left(\begin{array}{r}
0 \tag{4}\\
10 \\
-15
\end{array}\right) \text { and } \overrightarrow{\mathrm{PR}}=\left(\begin{array}{r}
-15 \\
10 \\
0
\end{array}\right)
$$

(ii) Show that the vector $\left(\begin{array}{l}2 \\ 3 \\ 2\end{array}\right)$ is perpendicular to the plane through P, Q and R.

Hence find the cartesian equation of this plane.
A hole is then drilled perpendicular to triangle PQR , as shown in Fig. 8.2. The hole passes through the triangle at the point T which divides the line PS in the ratio 2:1, where S is the midpoint of QR .
(iii) Write down the coordinates of S, and show that the point T has coordinates $\left(-5,16 \frac{2}{3}, 25\right)$. [4]
(iv) Write down a vector equation of the line of the drill hole.

Hence determine whether or not this line passes through C.

