## Section B (36 marks)

7 Fig. 7 shows the curve with parametric equations

$$
x=\cos \theta, y=\sin \theta-\frac{1}{8} \sin 2 \theta, 0 \leqslant \theta<2 \pi .
$$

The curve crosses the $x$-axis at points $\mathrm{A}(1,0)$ and $\mathrm{B}(-1,0)$, and the positive $y$-axis at $\mathrm{C} . \mathrm{D}$ is the maximum point of the curve, and $E$ is the minimum point.

The solid of revolution formed when this curve is rotated through $360^{\circ}$ about the $x$-axis is used to model the shape of an egg.


Fig. 7
(i) Show that, at the point $\mathrm{A}, \theta=0$. Write down the value of $\theta$ at the point B , and find the coordinates of C .
(ii) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of $\theta$.

Hence show that, at the point D ,

$$
\begin{equation*}
2 \cos ^{2} \theta-4 \cos \theta-1=0 \tag{5}
\end{equation*}
$$

(iii) Solve this equation, and hence find the $y$-coordinate of D , giving your answer correct to 2 decimal places.

The cartesian equation of the curve (for $0 \leqslant \theta \leqslant \pi$ ) is

$$
y=\frac{1}{4}(4-x) \sqrt{1-x^{2}} .
$$

(iv) Show that the volume of the solid of revolution of this curve about the $x$-axis is given by

$$
\frac{1}{16} \pi \int_{-1}^{1}\left(16-8 x-15 x^{2}+8 x^{3}-x^{4}\right) \mathrm{d} x .
$$

Evaluate this integral.

8 A pipeline is to be drilled under a river (see Fig. 8). With respect to axes Oxyz, with the $x$-axis pointing East, the $y$-axis North and the $z$-axis vertical, the pipeline is to consist of a straight section AB from the point $\mathrm{A}(0,-40,0)$ to the point $\mathrm{B}(40,0,-20)$ directly under the river, and another straight section $B C$. All lengths are in metres.


Fig. 8
(i) Calculate the distance AB .

The section BC is to be drilled in the direction of the vector $3 \mathbf{i}+4 \mathbf{j}+\mathbf{k}$.
(ii) Find the angle $A B C$ between the sections $A B$ and $B C$.

The section BC reaches ground level at the point $\mathrm{C}(a, b, 0)$.
(iii) Write down a vector equation of the line BC. Hence find $a$ and $b$.
(iv) Show that the vector $6 \mathbf{i}-5 \mathbf{j}+2 \mathbf{k}$ is perpendicular to the plane $A B C$. Hence find the cartesian equation of this plane.

