| Topic | What students need to learn: | |
| :--- | :--- | :--- | :--- |
| | Content | Guidance |

Topic	What students need to learn:		
	Content		Guidance
3 Matrices continued	3.3	Use matrices to represent linear transformations in 2-D. Successive transformations. Single transformations in 3-D.	For 2-D, identification and use of the matrix representation of single and combined transformations from: reflection in coordinate axes and lines $y= \pm x$, rotation through any angle about $(0,0)$, stretches parallel to the x-axis and y-axis, and enlargement about centre $(0,0)$, with scale factor $k,(k \neq 0)$, where $k \in \mathbb{R}$. Knowledge that the transformation represented by AB is the transformation represented by B followed by the transformation represented by \mathbf{A}. 3-D transformations confined to reflection in one of $x=0, y=0, z=0$ or rotation about one of the coordinate axes. Knowledge of 3-D vectors is assumed.
	3.4	Find invariant points and lines for a linear transformation.	For a given transformation, students should be able to find the coordinates of invariant points and the equations of invariant lines.
	3.5	Calculate determinants of 2×2 and 3×3 matrices and interpret as scale factors, including the effect on orientation.	Idea of the determinant as an area scale factor in transformations.
	3.6	Understand and use singular and non-singular matrices. Properties of inverse matrices. Calculate and use the inverse of non-singular 2×2 matrices and 3×3 matrices.	Understanding the process of finding the inverse of a matrix is required. Students should be able to use a calculator to calculate the inverse of a matrix.

Topic	What students need to learn:		
Continued	3.7	Solve three linear simultaneous equations in three variables by use of the inverse matrix.	Guidance

