1 Express  $3\cos\theta + 4\sin\theta$  in the form  $R\cos(\theta - \alpha)$ , where R > 0 and  $0 < \alpha < \frac{1}{2}\pi$ .

Hence find the range of the function  $f(\theta)$ , where

$$f(\theta) = 7 + 3\cos\theta + 4\sin\theta$$
 for  $0 \le \theta \le 2\pi$ .

Write down the greatest possible value of  $\frac{1}{7 + 3\cos\theta + 4\sin\theta}$ . [6]

3 Solve the equation

$$\sec^2\theta = 4, \quad 0 \le \theta \le \pi,$$

giving your answers in terms of  $\pi$ .

[4]

[7]

4 Solve the equation  $2\sin 2\theta + \cos 2\theta = 1$ , for  $0^\circ \le \theta < 360^\circ$ .

[6]

[6]

**1** Fig. 1 shows part of the graph of  $y = \sin x - \sqrt{3} \cos x$ .



Fig. 1

Express  $\sin x - \sqrt{3}\cos x$  in the form  $R \sin (x - \alpha)$ , where R > 0 and  $0 \le \alpha \le \frac{1}{2}\pi$ .

Hence write down the exact coordinates of the turning point P.

3 Given that  $\sin(\theta + \alpha) = 2\sin\theta$ , show that  $\tan\theta = \frac{\sin\alpha}{2 - \cos\alpha}$ .

Hence solve the equation  $\sin(\theta + 40^\circ) = 2\sin\theta$ , for  $0^\circ \le \theta \le 360^\circ$ . [7]

- 3 (i) Use the formula for  $\sin(\theta + \phi)$ , with  $\theta = 45^{\circ}$  and  $\phi = 60^{\circ}$ , to show that  $\sin 105^{\circ} = \frac{\sqrt{3} + 1}{2\sqrt{2}}$ .
  - (ii) In triangle ABC, angle  $BAC = 45^\circ$ , angle  $ACB = 30^\circ$  and AB = 1 unit (see Fig. 3).



Fig. 3

Using the sine rule, together with the result in part (i), show that  $AC = \frac{\sqrt{3}+1}{\sqrt{2}}$ . [3]

4 Show that  $\frac{1 + \tan^2 \theta}{1 - \tan^2 \theta} = \sec 2\theta$ .

Hence, or otherwise, solve the equation  $\frac{1 + \tan^2 \theta}{1 - \tan^2 \theta} = 2$ , for  $0^\circ \le \theta \le 180^\circ$ . [7]

1 Express  $\sin \theta - 3 \cos \theta$  in the form  $R \sin (\theta - \alpha)$ , where R and  $\alpha$  are constants to be determined, and  $0^{\circ} < \alpha < 90^{\circ}$ .

Hence solve the equation  $\sin \theta - 3\cos \theta = 1$  for  $0^{\circ} \le \theta \le 360^{\circ}$ . [7]

[7]

1 Express  $3\cos\theta + 4\sin\theta$  in the form  $R\cos(\theta - \alpha)$ , where R > 0 and  $0 < \alpha < \frac{1}{2}\pi$ .

Hence solve the equation  $3\cos\theta + 4\sin\theta = 2$  for  $-\pi \le \theta \le \pi$ .

- 4 The angle  $\theta$  satisfies the equation  $\sin(\theta + 45^\circ) = \cos \theta$ .
  - (i) Using the exact values of  $\sin 45^\circ$  and  $\cos 45^\circ$ , show that  $\tan \theta = \sqrt{2} 1$ . [5]
  - (ii) Find the values of  $\theta$  for  $0^{\circ} < \theta < 360^{\circ}$ . [2]

6 Solve the equation  $\csc \theta = 3$ , for  $0^{\circ} < \theta < 360^{\circ}$ .

[3]

- 3 Solve the equation  $\cos 2\theta = \sin \theta$  for  $0 \le \theta \le 2\pi$ , giving your answers in terms of  $\pi$ . [7]
- 4 Given that  $x = 2 \sec \theta$  and  $y = 3 \tan \theta$ , show that  $\frac{x^2}{4} \frac{y^2}{9} = 1.$  [3]

7 Express  $\sqrt{3} \sin x - \cos x$  in the form  $R \sin(x - \alpha)$ , where R > 0 and  $0 < \alpha < \frac{1}{2}\pi$ . Express  $\alpha$  in the form  $k\pi$ .

Find the exact coordinates of the maximum point of the curve  $y = \sqrt{3} \sin x - \cos x$  for which  $0 < x < 2\pi$ . [6]

[3]

4 Prove that 
$$\cot \beta - \cot \alpha = \frac{\sin(\alpha - \beta)}{\sin \alpha \sin \beta}$$
.

6 (i) Express  $\cos \theta + \sqrt{3} \sin \theta$  in the form  $R \cos(\theta - \alpha)$ , where R > 0 and  $\alpha$  is acute, expressing  $\alpha$  in terms of  $\pi$ . [4]

(ii) Write down the derivative of  $\tan \theta$ .

Hence show that 
$$\int_{0}^{\frac{1}{3}\pi} \frac{1}{(\cos\theta + \sqrt{3}\sin\theta)^2} \, \mathrm{d}\theta = \frac{\sqrt{3}}{4}.$$
 [4]

[7]

1 Express  $4\cos\theta - \sin\theta$  in the form  $R\cos(\theta + \alpha)$ , where R > 0 and  $0 < \alpha < \frac{1}{2}\pi$ .

Hence solve the equation  $4\cos\theta - \sin\theta = 3$ , for  $0 \le \theta \le 2\pi$ .

[7]

[6]

6 Given that  $\csc^2 \theta - \cot \theta = 3$ , show that  $\cot^2 \theta - \cot \theta - 2 = 0$ . Hence solve the equation  $\csc^2 \theta - \cot \theta = 3$  for  $0^\circ \le \theta \le 180^\circ$ .

- 8 Archimedes, about 2200 years ago, used regular polygons inside and outside circles to obtain approximations for  $\pi$ .
  - (i) Fig. 8.1 shows a regular 12-sided polygon inscribed in a circle of radius 1 unit, centre O. AB is one of the sides of the polygon. C is the midpoint of AB. Archimedes used the fact that the circumference of the circle is greater than the perimeter of this polygon.



Fig. 8.1

(A) Show that  $AB = 2 \sin 15^{\circ}$ .

[2]

[3]

- (*B*) Use a double angle formula to express  $\cos 30^\circ$  in terms of  $\sin 15^\circ$ . Using the exact value of  $\cos 30^\circ$ , show that  $\sin 15^\circ = \frac{1}{2}\sqrt{2-\sqrt{3}}$ . [4]
- (C) Use this result to find an exact expression for the perimeter of the polygon.

Hence show that 
$$\pi > 6\sqrt{2 - \sqrt{3}}$$
. [2]

(ii) In Fig. 8.2, a regular 12-sided polygon lies outside the circle of radius 1 unit, which touches each side of the polygon. F is the midpoint of DE. Archimedes used the fact that the circumference of the circle is less than the perimeter of this polygon.



Fig. 8.2

| [2] |
|-----|
| [   |

(B) Let  $t = \tan 15^\circ$ . Use a double angle formula to express  $\tan 30^\circ$  in terms of t.

Hence show that  $t^2 + 2\sqrt{3}t - 1 = 0$ .

- (C) Solve this equation, and hence show that  $\pi < 12(2 \sqrt{3})$ . [4]
- (iii) Use the results in parts (i)(C) and (ii)(C) to establish upper and lower bounds for the value of  $\pi$ , giving your answers in decimal form. [2]