1 Express $3 \cos \theta+4 \sin \theta$ in the form $R \cos (\theta-\alpha)$, where $R>0$ and $0<\alpha<\frac{1}{2} \pi$. Hence find the range of the function $f(\theta)$, where

$$
f(\theta)=7+3 \cos \theta+4 \sin \theta \quad \text { for } 0 \leqslant \theta \leqslant 2 \pi .
$$

Write down the greatest possible value of $\frac{1}{7+3 \cos \theta+4 \sin \theta}$.

3 Solve the equation

$$
\sec ^{2} \theta=4, \quad 0 \leqslant \theta \leqslant \pi
$$

giving your answers in terms of π.

5 Solve the equation $2 \cos 2 x=1+\cos x$, for $0^{\circ} \leqslant x<360^{\circ}$.

1 Fig. 1 shows part of the graph of $y=\sin x-\sqrt{3} \cos x$.

Fig. 1
Express $\sin x-\sqrt{3} \cos x$ in the form $R \sin (x-\alpha)$, where $R>0$ and $0 \leqslant \alpha \leqslant \frac{1}{2} \pi$.
Hence write down the exact coordinates of the turning point P .

3 Given that $\sin (\theta+\alpha)=2 \sin \theta$, show that $\tan \theta=\frac{\sin \alpha}{2-\cos \alpha}$.

3 (i) Use the formula for $\sin (\theta+\phi)$, with $\theta=45^{\circ}$ and $\phi=60^{\circ}$, to show that $\sin 105^{\circ}=\frac{\sqrt{3}+1}{2 \sqrt{2}}$.
(ii) In triangle ABC , angle $\mathrm{BAC}=45^{\circ}$, angle $\mathrm{ACB}=30^{\circ}$ and $\mathrm{AB}=1$ unit (see Fig. 3).

Fig. 3
Using the sine rule, together with the result in part (\mathbf{i}), show that $\mathrm{AC}=\frac{\sqrt{3}+1}{\sqrt{2}}$.

4 Show that $\frac{1+\tan ^{2} \theta}{1-\tan ^{2} \theta}=\sec 2 \theta$.
Hence, or otherwise, solve the equation $\frac{1+\tan ^{2} \theta}{1-\tan ^{2} \theta}=2$, for $0^{\circ} \leqslant \theta \leqslant 180^{\circ}$.

1 Express $\sin \theta-3 \cos \theta$ in the form $R \sin (\theta-\alpha)$, where R and α are constants to be determined, and $0^{\circ}<\alpha<90^{\circ}$.

Hence solve the equation $\sin \theta-3 \cos \theta=1$ for $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$.

1 Express $3 \cos \theta+4 \sin \theta$ in the form $R \cos (\theta-\alpha)$, where $R>0$ and $0<\alpha<\frac{1}{2} \pi$.
Hence solve the equation $3 \cos \theta+4 \sin \theta=2$ for $-\pi \leqslant \theta \leqslant \pi$.

4 The angle θ satisfies the equation $\sin \left(\theta+45^{\circ}\right)=\cos \theta$.
(i) Using the exact values of $\sin 45^{\circ}$ and $\cos 45^{\circ}$, show that $\tan \theta=\sqrt{2}-1$.
(ii) Find the values of θ for $0^{\circ}<\theta<360^{\circ}$.

6 Solve the equation $\operatorname{cosec} \theta=3$, for $0^{\circ}<\theta<360^{\circ}$.

3 Solve the equation $\cos 2 \theta=\sin \theta$ for $0 \leqslant \theta \leqslant 2 \pi$, giving your answers in terms of π.

4 Given that $x=2 \sec \theta$ and $y=3 \tan \theta$, show that $\frac{x^{2}}{4}-\frac{y^{2}}{9}=1$.

7 Express $\sqrt{3} \sin x-\cos x$ in the form $R \sin (x-\alpha)$, where $R>0$ and $0<\alpha<\frac{1}{2} \pi$. Express α in the form $k \pi$.

Find the exact coordinates of the maximum point of the curve $y=\sqrt{3} \sin x-\cos x$ for which $0<x<2 \pi$.

4 Prove that $\cot \beta-\cot \alpha=\frac{\sin (\alpha-\beta)}{\sin \alpha \sin \beta}$.

6 (i) Express $\cos \theta+\sqrt{3} \sin \theta$ in the form $R \cos (\theta-\alpha)$, where $R>0$ and α is acute, expressing α in terms of π.
(ii) Write down the derivative of $\tan \theta$.

Hence show that $\int_{0}^{\frac{1}{3} \pi} \frac{1}{(\cos \theta+\sqrt{3} \sin \theta)^{2}} \mathrm{~d} \theta=\frac{\sqrt{3}}{4}$.

1 Express $4 \cos \theta-\sin \theta$ in the form $R \cos (\theta+\alpha)$, where $R>0$ and $0<\alpha<\frac{1}{2} \pi$.

Hence solve the equation $4 \cos \theta-\sin \theta=3$, for $0 \leqslant \theta \leqslant 2 \pi$.

6 Given that $\operatorname{cosec}^{2} \theta-\cot \theta=3$, show that $\cot ^{2} \theta-\cot \theta-2=0$.
Hence solve the equation $\operatorname{cosec}^{2} \theta-\cot \theta=3$ for $0^{\circ} \leqslant \theta \leqslant 180^{\circ}$.

8 Archimedes, about 2200 years ago, used regular polygons inside and outside circles to obtain approximations for π.
(i) Fig. 8.1 shows a regular 12 -sided polygon inscribed in a circle of radius 1 unit, centre O . AB is one of the sides of the polygon. C is the midpoint of AB . Archimedes used the fact that the circumference of the circle is greater than the perimeter of this polygon.

Fig. 8.1
(A) Show that $\mathrm{AB}=2 \sin 15^{\circ}$.
(B) Use a double angle formula to express $\cos 30^{\circ}$ in terms of $\sin 15^{\circ}$. Using the exact value of $\cos 30^{\circ}$, show that $\sin 15^{\circ}=\frac{1}{2} \sqrt{2-\sqrt{3}}$.
(C) Use this result to find an exact expression for the perimeter of the polygon.

Hence show that $\pi>6 \sqrt{2-\sqrt{3}}$.
(ii) In Fig. 8.2, a regular 12-sided polygon lies outside the circle of radius 1 unit, which touches each side of the polygon. F is the midpoint of DE. Archimedes used the fact that the circumference of the circle is less than the perimeter of this polygon.

Fig. 8.2
(A) Show that $\mathrm{DE}=2 \tan 15^{\circ}$.
(B) Let $t=\tan 15^{\circ}$. Use a double angle formula to express $\tan 30^{\circ}$ in terms of t.

Hence show that $t^{2}+2 \sqrt{3} t-1=0$.
(C) Solve this equation, and hence show that $\pi<12(2-\sqrt{3})$.
(iii) Use the results in parts $(\mathbf{i})(C)$ and $(\mathbf{i i})(C)$ to establish upper and lower bounds for the value of π, giving your answers in decimal form.

