2 Find the first 4 terms in the binomial expansion of $\sqrt{4+2 x}$. State the range of values of x for which the expansion is valid.

1 Solve the equation $\frac{2 x}{x-2}-\frac{4 x}{x+1}=3$.

6 (i) Find the first three non-zero terms of the binomial expansion of $\frac{1}{\sqrt{4-x^{2}}}$ for $|x|<2$. [4]
(ii) Use this result to find an approximation for $\int_{0}^{1} \frac{1}{\sqrt{4-x^{2}}} \mathrm{~d} x$, rounding your answer to
4 significant figures.
(iii) Given that $\int \frac{1}{\sqrt{4-x^{2}}} \mathrm{~d} x=\arcsin \left(\frac{1}{2} x\right)+c$, evaluate $\int_{0}^{1} \frac{1}{\sqrt{4-x^{2}}} \mathrm{~d} x$, rounding your answer to 4 significant figures.

2 (i) Given that

$$
\frac{3+2 x^{2}}{(1+x)^{2}(1-4 x)}=\frac{A}{1+x}+\frac{B}{(1+x)^{2}}+\frac{C}{1-4 x},
$$

where A, B and C are constants, find B and C, and show that $A=0$.
(ii) Given that x is sufficiently small, find the first three terms of the binomial expansions of $(1+x)^{-2}$ and $(1-4 x)^{-1}$.

Hence find the first three terms of the expansion of $\frac{3+2 x^{2}}{(1+x)^{2}(1-4 x)}$.

1 Solve the equation $\frac{1}{x}+\frac{x}{x+2}=1$.

5 Find the first four terms in the binomial expansion of $(1+3 x)^{\frac{1}{3}}$. State the range of values of x for which the expansion is valid.
(i) Find the first three terms in the binomial expansion of $\frac{1}{\sqrt{1-2 x}}$. State the set of values of x for which the expansion is valid.
(ii) Hence find the first three terms in the series expansion of $\frac{1+2 x}{\sqrt{1-2 x}}$.

5 Express $\frac{4}{x\left(x^{2}+4\right)}$ in partial fractions.

1 Express $\frac{x}{x^{2}-4}+\frac{2}{x+2}$ as a single fraction, simplifying your answer.

6 (i) Find the first three non-zero terms of the binomial series expansion of $\frac{1}{\sqrt{1+4 x^{2}}}$, and state the set of values of x for which the expansion is valid.
(ii) Hence find the first three non-zero terms of the series expansion of $\frac{1-x^{2}}{\sqrt{1+4 x^{2}}}$.

1 Express $\frac{3 x+2}{x\left(x^{2}+1\right)}$ in partial fractions.

2 Show that $(1+2 x)^{\frac{1}{3}}=1+\frac{2}{3} x-\frac{4}{9} x^{2}+\ldots$, and find the next term in the expansion. State the set of values of x for which the expansion is valid.

