| 1. | Given | that | |----|-------|------| | | | | $$\frac{2x^4 - 3x^2 + x + 1}{(x^2 - 1)} \equiv (ax^2 + bx + c) + \frac{dx + e}{(x^2 - 1)},$$ find the values of the constants a, b, c, d and e. **(4)** The new syllabus requires division by linear factors only. However, dividing by a quadratic factor is no more difficult. The function f is defined by $$f: x \mapsto \frac{2(x-1)}{x^2 - 2x - 3} - \frac{1}{x - 3}, \quad x > 3.$$ (a) Show that $f(x) = \frac{1}{x+1}$, x > 3. **(4)** (b) Find the range of f. physicsandmathstutor.com **(2)** (c) Find $f^{-1}(x)$. State the domain of this inverse function. **(3)** The function g is defined by $$g: x \mapsto 2x^2 - 3, \quad x \in \mathbb{R}.$$ (d) Solve $fg(x) = \frac{1}{8}$. **(3)** 2. $$f(x) = \frac{2x+2}{x^2-2x-3} - \frac{x+1}{x-3}$$ (a) Express f(x) as a single fraction in its simplest form. **(4)** (b) Hence show that $f'(x) = \frac{2}{(x-3)^2}$ (3) |
 | |------|
 | | | | | | | | | |
 | **7.** The function f is defined by $$f(x) = 1 - \frac{2}{(x+4)} + \frac{x-8}{(x-2)(x+4)}, \quad x \in \mathbb{R}, \ x \neq -4, \ x \neq 2$$ (a) Show that $$f(x) = \frac{x-3}{x-2}$$ (5) The function g is defined by $$g(x) = \frac{e^x - 3}{e^x - 2}, \quad x \in \mathbb{R}, \ x \neq \ln 2$$ - (b) Differentiate g(x) to show that $g'(x) = \frac{e^x}{(e^x 2)^2}$ (3) - (c) Find the exact values of x for which g'(x) = 1 (4) | Leave | | |-------|--| | blank | | | | | | Express | | | |-------------------------------------|---------------------------------------|-----| | | $\frac{x+1}{3x^2-3} - \frac{1}{3x+1}$ | | | as a single fraction in its simples | est form. | (4) | **(3)** | Leave | |-------| | blank | | 8. | (a) | Simplify | fully | |----|------|----------|-------| | • | (**) | ~ | | $$\frac{2x^2 + 9x - 5}{x^2 + 2x - 15}$$ Given that $$ln(2x^2+9x-5)=1+ln(x^2+2x-15)$$, $x \neq -5$ | | ms of e | (b) find x in terms of e. | | | | |----------------------|------------|---------------------------|--|--|--| | (b) Tille x ill tell | ills of e. |