1.	Given	that

$$\frac{2x^4 - 3x^2 + x + 1}{(x^2 - 1)} \equiv (ax^2 + bx + c) + \frac{dx + e}{(x^2 - 1)},$$

find the values of the constants a, b, c, d and e.

(4)

The new syllabus requires division by linear factors only. However, dividing by a quadratic factor is no more difficult.

The function f is defined by

$$f: x \mapsto \frac{2(x-1)}{x^2 - 2x - 3} - \frac{1}{x - 3}, \quad x > 3.$$

(a) Show that $f(x) = \frac{1}{x+1}$, x > 3.

(4)

(b) Find the range of f. physicsandmathstutor.com

(2)

(c) Find $f^{-1}(x)$. State the domain of this inverse function.

(3)

The function g is defined by

$$g: x \mapsto 2x^2 - 3, \quad x \in \mathbb{R}.$$

(d) Solve $fg(x) = \frac{1}{8}$.

(3)

2.

$$f(x) = \frac{2x+2}{x^2-2x-3} - \frac{x+1}{x-3}$$

(a) Express f(x) as a single fraction in its simplest form.

(4)

(b) Hence show that $f'(x) = \frac{2}{(x-3)^2}$

(3)

7. The function f is defined by

$$f(x) = 1 - \frac{2}{(x+4)} + \frac{x-8}{(x-2)(x+4)}, \quad x \in \mathbb{R}, \ x \neq -4, \ x \neq 2$$

(a) Show that
$$f(x) = \frac{x-3}{x-2}$$
 (5)

The function g is defined by

$$g(x) = \frac{e^x - 3}{e^x - 2}, \quad x \in \mathbb{R}, \ x \neq \ln 2$$

- (b) Differentiate g(x) to show that $g'(x) = \frac{e^x}{(e^x 2)^2}$ (3)
- (c) Find the exact values of x for which g'(x) = 1 (4)

Leave	
blank	

Express		
	$\frac{x+1}{3x^2-3} - \frac{1}{3x+1}$	
as a single fraction in its simples	est form.	(4)

(3)

Leave
blank

8.	(a)	Simplify	fully
•	(**)	~	

$$\frac{2x^2 + 9x - 5}{x^2 + 2x - 15}$$

Given that

$$ln(2x^2+9x-5)=1+ln(x^2+2x-15)$$
, $x \neq -5$

	ms of e	(b) find x in terms of e.			
(b) Tille x ill tell	ills of e.				

