Topics	What students need to learn:		
	Content		Guidance
7 Differentiation	7.1	Understand and use the derivative of $\mathrm{f}(x)$ as the gradient of the tangent to the graph of $y=\mathrm{f}(x)$ at a general point (x, y); the gradient of the tangent as a limit; interpretation as a rate of change sketching the gradient function for a given curve second derivatives differentiation from first principles for small positive integer powers of x Understand and use the second derivative as the rate of change of gradient.	Know that $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is the rate of change of y with respect to x. Knowledge of the chain rule is not required. The notation $\mathrm{f}^{\prime}(x)$ may be used for the first derivative and $\mathrm{f}^{\prime \prime}(x)$ may be used for the second derivative. Given for example the graph of $y=\mathrm{f}(x)$, sketch the graph of $y=\mathrm{f}^{\prime}(x)$ using given axes and scale. This could relate speed and acceleration for example. For example, students should be able to use, for $n=2$ and $n=3$, the gradient expression $\lim _{h \rightarrow 0}\left(\frac{(x+h)^{n}-x^{n}}{h}\right)$ Students may use δx or h Use the condition $\mathrm{f}^{\prime \prime}(x)>0$ implies a minimum and $\mathrm{f}^{\prime \prime}(x)<0$ implies a maximum for points where $\mathrm{f}^{\prime}(x)=0$
	7.2	Differentiate x^{n}, for rational values of n, and related constant multiples, sums and differences.	For example, the ability to differentiate expressions such as $(2 x+5)(x-1) \text { and } \frac{x^{2}+3 x-5}{4 x^{\frac{1}{2}}}, x>0$ is expected.
	7.3	Apply differentiation to find gradients, tangents and normals, maxima and minima and stationary points. Identify where functions are increasing or decreasing.	Use of differentiation to find equations of tangents and normals at specific points on a curve. To include applications to curve sketching. Maxima and minima problems may be set in the context of a practical problem. To include applications to curve sketching.

Topics	What students need to learn:		
	Content		Guidance
8 Integration	8.1	Know and use the Fundamental Theorem of Calculus.	Integration as the reverse process of differentiation. Students should know that for indefinite integrals a constant of integration is required.
	8.2	Integrate x^{n} (excluding $n=-1$) and related sums, differences and constant multiples.	For example, the ability to integrate expressions such as $\frac{1}{2} x^{2}-3 x^{-\frac{1}{2}}$ and $\frac{(x+2)^{2}}{x^{\frac{1}{2}}}$ is expected. Given $\mathrm{f}^{\prime}(x)$ and a point on the curve, Students should be able to find an equation of the curve in the form $y=\mathrm{f}(x)$.
	8.3	Evaluate definite integrals; use a definite integral to find the area under a curve.	Students will be expected to understand the implication of a negative answer.

