Mark Scheme Summer 2009

GCE

GCE Mathematics (8371/ 8374; 9371/ 9374)

Question Number	Scheme	Marks
Q3 (a) (b)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=6 x^{2}-6 x^{-3} \\ & \frac{2 x^{4}}{4}+\frac{3 x^{-1}}{-1}(+C) \\ & \frac{x^{4}}{2}-3 x^{-1}+C \end{aligned}$	M1 A1 A1 (3) M1 A1 A1 (3) [6]
(a) (b)	M1 for an attempt to differentiate $x^{n} \rightarrow x^{n-1}$ $1^{\text {st }} \mathrm{A} 1$ for $6 x^{2}$ $2^{\text {nd }}$ A1 for $-6 x^{-3}$ or $-\frac{6}{x^{3}}$ Condone $+-6 x^{-3}$ here. Inclusion of $+c$ scores A0 here. M1 for some attempt to integrate an x term of the given $y . \quad x^{n} \rightarrow x^{n+1}$ $1^{\text {st }} \mathrm{A} 1 \quad$ for both x terms correct but unsimplified- as printed or better. Ignore $+c$ here $2^{\text {nd }}$ A1 for both x terms correct and simplified and $+c$. Accept $-\frac{3}{x}$ but NOT $+-3 x^{-1}$ Condone the $+c$ appearing on the first (unsimplified) line but missing on the final (simplified) line Apply ISW if a correct answer is seen If part (b) is attempted first and this is clearly labelled then apply the scheme and allow the marks. Otherwise assume the first solution is for part (a).	

Question Number	Scheme	Marks
Q9 (a) (b) (c)	$\begin{align*} & {\left[(3-4 \sqrt{x})^{2}=\right] 9-12 \sqrt{x}-12 \sqrt{x}+(-4)^{2} x } \\ & 9 x^{-\frac{1}{2}}+16 x^{\frac{1}{2}}-24 \tag{3}\\ \mathrm{f}^{\prime}(x)= & -\frac{9}{2} x^{-\frac{3}{2}},+\frac{16}{2} x^{-\frac{1}{2}} \\ \mathrm{f}^{\prime}(9)=- & \frac{9}{2} \times \frac{1}{27}+\frac{16}{2} \times \frac{1}{3}=-\frac{1}{6}+\frac{16}{6}=\frac{5}{2} \end{align*}$	M1 A1, A1ft (3) M1 A1 (2) [8]
(a) (b) (c)	M1 for an attempt to expand $(3-4 \sqrt{ } x)^{2}$ with at least 3 terms correct- as printed or better Or $9-k \sqrt{x}+16 x(k \neq 0)$. See also the MR rule below $1^{\text {st }}$ A1 for their coefficient of $\sqrt{x}=16$. Condone writing $(\pm) 9 x^{\left(\pm \frac{1}{2}\right.}$ instead of $9 x^{-\frac{1}{2}}$ $2^{\text {nd }} \mathrm{A} 1$ for $B=-24$ or their constant term $=-24$ M1 for an attempt to differentiate an x term $x^{n} \rightarrow x^{n-1}$ $2^{\text {nd }} \mathrm{A} 1 \mathrm{ft}$ follow through their $A x^{\frac{1}{2}}$ but can be scored without a value for A, i.e. for $\frac{A}{2} x^{-\frac{1}{2}}$ M1 for some correct substitution of $x=9$ in their expression for $\mathrm{f}^{\prime}(x)$ including an attempt at $(9)^{ \pm \frac{k}{2}}(k$ odd $)$ somewhere that leads to some appropriate multiples of $\frac{1}{3}$ or 3 A1 accept $\frac{15}{6}$ or any exact equivalent of 2.5 e.g. $\frac{45}{18}, \frac{135}{54}$ or even $\frac{67.5}{27}$ Misread (MR) Only allow MR of the form $\frac{(3-k \sqrt{x})^{2}}{\sqrt{x}}$ N.B. Leads to answer in (c) of $\frac{k^{2}-1}{6}$ Score as M1A0A0, M1A1A1ft, M1A1ft	

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks \\
\hline \begin{tabular}{l}
Q11 (a) \\
(b) \\
(c)
\end{tabular} \& \& \begin{tabular}{l}
M1 A1 \\
A1ft \\
M1, A1 \\
(5) \\
B1ft \\
M1, A1 \\
M1 \\
Alcso \\
(5) \\
[11]
\end{tabular} \\
\hline (a)
(b)

(c)

ALT \& | B1 there must be a clear attempt to substitute $x=2$ leading to 7 |
| :--- |
| e.g. $2^{3}-2 \times 2^{2}-2+9=7$ |
| $1^{\text {st }} \mathrm{M} 1$ for an attempt to differentiate with at least one of the given terms fully correct. |
| $1^{\text {st }} \mathrm{A} 1$ for a fully correct expression |
| $2^{\text {nd }}$ A1ft for sub. $x=2$ in their $\frac{\mathrm{d} y}{\mathrm{~d} x}(\neq y)$ accept for a correct expression e.g. $3 \times(2)^{2}-4 \times 2-1$ |
| $2^{\text {nd }}$ M1 for use of their " 3 " (provided it comes from their $\frac{\mathrm{d} y}{\mathrm{~d} x}(\neq y)$ and $x=2$) to find equation of tangent. Alternative is to use $(2,7)$ in $y=m x+c$ to find a value for c. Award when $c=\ldots$ is seen. |
| No attempted use of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in (b) scores $0 / 5$ |
| $1^{\text {st }} \mathrm{M} 1 \quad$ for forming an equation from their $\frac{\mathrm{d} y}{\mathrm{~d} x}(\neq y)$ and their $-\frac{1}{m}$ (must be changed from m) |
| $1^{\text {st }} \mathrm{A} 1$ for a correct 3 TQ all terms on LHS (condone missing $=0$) |
| $2^{\text {nd }}$ M1 for proceeding to $x=\ldots$ or $3 x=\ldots$ by formula or completing the square for a 3TQ. |
| Not factorising. Condone \pm |
| $2^{\text {nd }}$ A1 for proceeding to given answer with no incorrect working seen. Can still have \pm. |
| Verify (for M1A1M1A1) |
| $1^{\text {st }} \mathrm{M} 1$ for attempting to square need ≥ 3 correct values in $\frac{4+6+4 \sqrt{6}}{9}, 1^{\text {st }} \mathrm{A} 1$ for $\frac{10+4 \sqrt{6}}{9}$ $2^{\text {nd }}$ M1 Dependent on $1^{\text {st }}$ M1 in this case for substituting in all terms of their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ | \&

\hline
\end{tabular}

J une 2009
6664 Core Mathematics C2
Mark Scheme

Question Number	Scheme Marks
Q1	$\begin{align*} & \int\left(2 x+3 x^{\frac{1}{2}}\right) \mathrm{d} x=\frac{2 x^{2}}{2}+\frac{3 x^{\frac{3}{2}}}{\frac{3}{2}} \\ & \begin{aligned} \int_{1}^{4}\left(2 x+3 x^{\frac{1}{2}}\right) \mathrm{d} x & =\left[x^{2}+2 x^{\frac{3}{2}}\right]_{1}^{4}=(16+2 \times 8)-(1+2) \\ & =29 \end{aligned}(29+C \text { scores } \mathrm{A} 0) \end{align*}$
	$1^{\text {st }} \mathrm{M} 1$ for attempt to integrate $x \rightarrow k x^{2}$ or $x^{\frac{1}{2}} \rightarrow k x^{\frac{3}{2}}$. $1^{\text {st }} \mathrm{A} 1$ for $\frac{2 x^{2}}{2}$ or a simplified version. $2^{\text {nd }} \mathrm{A} 1$ for $\frac{3 x^{\frac{3}{2}}}{(3 / 2)}$ or $\frac{3 x \sqrt{x}}{(3 / 2)}$ or a simplified version. Ignore $+C$, if seen, but two correct terms and an extra non-constant term scores M1A1A0. $2^{\text {nd }}$ M1 for correct use of correct limits ('top' - 'bottom'). Must be used in a 'changed function', not just the original. (The changed function may have been found by differentiation). Ignore 'poor notation' (e.g. missing integral signs) if the intention is clear. No working: The answer 29 with no working scores M0A0A0M1A0 (1 mark).

\begin{tabular}{|c|c|}
\hline Question Number \& Scheme Marks \\
\hline Q9 (a) \& \begin{tabular}{l}
(Arc length \(=\)) \(r \theta=r \times 1=r\). Can be awarded by implication from later work, e.g. \\
\(3 r h\) or \((2 r h+r h)\) in the \(S\) formula. (Requires use of \(\theta=1\)). \\
(Sector area \(=\)) \(\frac{1}{2} r^{2} \theta=\frac{1}{2} r^{2} \times 1=\frac{r^{2}}{2}\). Can be awarded by implication from later \\
work, e.g. the correct volume formula. (Requires use of \(\theta=1\)). \\
Surface area \(=2\) sectors +2 rectangles + curved face
\[
\left(=r^{2}+3 r h\right) \quad(\text { See notes below for what is allowed here })
\] \\
Volume \(=300=\frac{1}{2} r^{2} h\) \\
Sub for \(h: S=r^{2}+3 \times \frac{600}{r}=r^{2}+\frac{1800}{r}\) \\
\(\frac{\mathrm{d} S}{\mathrm{~d} r}=2 r-\frac{1800}{r^{2}}\) or \(2 r-1800 r^{-2}\) or \(2 r+-1800 r^{-2}\) \\
\(\frac{\mathrm{d} S}{\mathrm{~d} r}=0 \Rightarrow r^{3}=\ldots, \quad r=\sqrt[3]{900}\), or AWRT \(9.7 \quad(\) NOT -9.7 or \(\pm 9.7)\) \\
\(\frac{\mathrm{d}^{2} S}{\mathrm{~d} r^{2}}=\ldots . \quad\) and consider sign, \(\frac{\mathrm{d}^{2} S}{\mathrm{~d} r^{2}}=2+\frac{3600}{r^{3}}>0\) so point is a minimum
\[
S_{\min }=(9.65 \ldots)^{2}+\frac{1800}{9.65 \ldots}
\] \\
(Using their value of \(r\), however found, in the given \(S\) formula)
\end{tabular} \\
\hline (a)
(b)

(c) \& | M1 for attempting a formula (with terms added) for surface area. May be incomplete or wrong and may have extra term(s), but must have an r^{2} (or $r^{2} \theta$) term and an $r h$ (or $r h \theta$) term. |
| :--- |
| In parts (b), (c) and (d), ignore labelling of parts |
| $1^{\text {st }} \mathrm{M} 1$ for attempt at differentiation (one term is sufficient) $r^{n} \rightarrow k r^{n-1}$ |
| $2^{\text {nd }} \mathrm{M} 1$ for setting their derivative (a 'changed function') $=0$ and solving as far as $r^{3}=\ldots$ (depending upon their 'changed function', this could be $r=\ldots$ or $r^{2}=\ldots$, etc., but the algebra must deal with a negative power of r and should be sound apart from possible sign errors, so that $r^{n}=\ldots$ is consistent with their derivative). |
| M1 for attempting second derivative (one term is sufficient) $r^{n} \rightarrow k r^{n-1}$, and considering its sign. Substitution of a value of r is not required. (Equating it to zero is M0). |
| A1ft for a correct second derivative (or correct ft from their first derivative) and a valid reason (e.g. >0), and conclusion. The actual value of the second derivative, if found, can be ignored. To score this mark as ft , their second derivative must indicate a minimum. |
| Alternative: |
| M1: Find value of $\frac{\mathrm{d} S}{\mathrm{~d} r}$ on each side of their value of r and consider sign. |
| A1ft: Indicate sign change of negative to positive for $\frac{\mathrm{d} S}{\mathrm{~d} r}$, and conclude minimum. |
| Alternative: |
| M1: Find value of S on each side of their value of r and compare with their 279.65. |
| A1ft: Indicate that both values are more than 279.65 , and conclude minimum. |

\hline
\end{tabular}

