

#### Mark Scheme Summer 2009

GCE

GCE Mathematics (8371/8374; 9371/9374)

A PEARSON COMPANY

| Ques<br>Num |     | Scheme                                                                                                                                                                                                                             | Marks            |
|-------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Q3          | (a) | $\frac{\mathrm{d}y}{\mathrm{d}x} = 6x^2 - 6x^{-3}$                                                                                                                                                                                 | M1 A1 A1<br>(3)  |
|             | (b) | $\frac{dy}{dx} = 6x^2 - 6x^{-3}$ $\frac{2x^4}{4} + \frac{3x^{-1}}{-1}(+C)$ $\frac{x^4}{2} - 3x^{-1} + C$                                                                                                                           | M1 A1            |
|             |     | $\frac{x^4}{2} - 3x^{-1} + C$                                                                                                                                                                                                      | A1<br>(3)<br>[6] |
|             | (a) | M1 for an attempt to differentiate $x^n \to x^{n-1}$<br>$1^{\text{st}} \text{A1}$ for $6x^2$<br>$2^{\text{nd}} \text{A1}$ for $-6x^{-3}$ or $-\frac{6}{x^3}$ Condone + $-6x^{-3}$ here. Inclusion of + <i>c</i> scores A0 here.    |                  |
|             | (b) | M1 for some attempt to integrate an <i>x</i> term of the given <i>y</i> . $x^n \rightarrow x^{n+1}$<br>1 <sup>st</sup> A1 for <b>both</b> <i>x</i> terms correct but unsimplified- as printed or better. Ignore + <i>c</i><br>here |                  |
|             |     | 2 <sup>nd</sup> A1 for both x terms correct and simplified and +c. Accept $-\frac{3}{x}$ but <u>NOT</u><br>+ $-3x^{-1}$<br>Condone the +c appearing on the first (unsimplified) line but missing on the                            |                  |
|             |     | final (simplified) line<br>Apply ISW if a correct answer is seen                                                                                                                                                                   |                  |
|             |     | If part (b) is attempted first and this is clearly labelled then apply the scheme and allow the marks. Otherwise assume the first solution is for part (a).                                                                        |                  |

| Ques<br>Num |     | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mark   | (S                |
|-------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------|
| Q9          | (a) | $\left[ (3 - 4\sqrt{x})^2 = \right] 9 - 12\sqrt{x} - 12\sqrt{x} + (-4)^2 x$                                                                                                                                                                                                                                                                                                                                                                                                           | M1     |                   |
|             | (b) | $9x^{-\frac{1}{2}} + 16x^{\frac{1}{2}} - 24$<br>f'(x) = $-\frac{9}{2}x^{-\frac{3}{2}}, +\frac{16}{2}x^{-\frac{1}{2}}$                                                                                                                                                                                                                                                                                                                                                                 | A1, A1 |                   |
|             | (C) | $f'(9) = -\frac{9}{2} \times \frac{1}{27} + \frac{16}{2} \times \frac{1}{3} = -\frac{1}{6} + \frac{16}{6} = \frac{5}{2}$                                                                                                                                                                                                                                                                                                                                                              | M1 A1  | (3)<br>(2)<br>[8] |
|             | (a) | M1 for an attempt to expand $(3-4\sqrt{x})^2$ with at least 3 terms correct- as printed<br>or better<br><u>Or</u> $9-k\sqrt{x}+16x$ ( $k \neq 0$ ). See also the MR rule below<br>1 <sup>st</sup> A1 for their coefficient of $\sqrt{x} = 16$ . Condone writing $(\pm)9x^{(\pm)\frac{1}{2}}$ instead of $9x^{-\frac{1}{2}}$<br>2 <sup>nd</sup> A1 for $B = -24$ or their constant term = -24                                                                                          |        |                   |
|             | (b) | M1 for an attempt to differentiate an x term $x^n \to x^{n-1}$<br>$1^{\text{st}} A1$ for $-\frac{9}{2}x^{-\frac{3}{2}}$ and their constant <i>B</i> differentiated to zero. NB $-\frac{1}{2} \times 9x^{-\frac{3}{2}}$ is A0<br>$2^{\text{nd}}$ A1ft follow through their $Ax^{\frac{1}{2}}$ but can be scored without a value for <i>A</i> , i.e. for<br>$\frac{A}{2}x^{-\frac{1}{2}}$                                                                                               |        |                   |
|             | (c) | M1 for some correct substitution of $x = 9$ in <u>their</u> expression for $f'(x)$ including an attempt<br>at $(9)^{\pm \frac{k}{2}}$ (k odd) somewhere that leads to some appropriate multiples of $\frac{1}{3}$ or 3<br>A1 accept $\frac{15}{6}$ or any exact equivalent of 2.5 e.g. $\frac{45}{18}, \frac{135}{54}$ or even $\frac{67.5}{27}$<br><u>Misread (MR)</u> Only allow MR of the form $\frac{(3-k\sqrt{x})^2}{\sqrt{x}}$ N.B. Leads to answer in (c) of $\frac{k^2-1}{6}$ |        |                   |
|             |     | Score as M1A0A0, M1A1A1ft, M1A1ft                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |                   |

| Question<br>Number | Scheme                                                                                                                                                        | Mar           | ks   |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------|
|                    |                                                                                                                                                               | D.            |      |
| Q11 (a)<br>(b)     |                                                                                                                                                               | B1            | (1)  |
|                    | $\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 4x - 1$                                                                                                             | M1 A1         |      |
|                    | $x = 2$ : $\frac{dy}{dx} = 12 - 8 - 1 (= 3)$                                                                                                                  | A1ft          |      |
|                    | y-7=3(x-2), $y=3x+1$                                                                                                                                          | M1, <u>A1</u> | (5)  |
| (C)                | $m = -\frac{1}{3}$ (for $-\frac{1}{m}$ with their m)                                                                                                          | B1ft          |      |
|                    | $3x^2 - 4x - 1 = -\frac{1}{3}$ , $9x^2 - 12x - 2 = 0$ or $x^2 - \frac{4}{3}x - \frac{2}{9} = 0$ (o.e.)                                                        | M1, A1        |      |
|                    | $\left(x = \frac{12 + \sqrt{144 + 72}}{18}\right) \left(\sqrt{216} = \sqrt{36}\sqrt{6} = 6\sqrt{6}\right) \text{ or } (3x - 2)^2 = 6 \to 3x = 2 \pm \sqrt{6}$ | M1            |      |
|                    | $x = \frac{1}{3} \left( 2 + \sqrt{6} \right) \tag{*}$                                                                                                         | A1cso         | (5)  |
|                    | 3                                                                                                                                                             |               | [11] |
| (a)                | B1 there must be a clear attempt to substitute $x = 2$ leading to 7                                                                                           |               |      |
| (b)                | e.g. $2^3 - 2 \times 2^2 - 2 + 9 = 7$                                                                                                                         |               |      |
| (0)                | 1 <sup>st</sup> M1 for an attempt to differentiate with at least one of the given terms fully correct.                                                        |               |      |
|                    | $1^{\text{st}} A1$ for a fully correct expression                                                                                                             |               |      |
|                    | $2^{nd}$ A1ft for sub. $x=2$ in their $\frac{dy}{dx} \neq y$ accept for a correct expression e.g.                                                             |               |      |
|                    | $3 \times (2)^2 - 4 \times 2 - 1$                                                                                                                             |               |      |
|                    | 2 <sup>nd</sup> M1 for use of their "3" (provided it comes from their $\frac{dy}{dx} \neq y$ ) and x=2) to find                                               |               |      |
|                    | equation of tangent. Alternative is to use (2, 7) in $y = mx + c$ to <u>find a value</u> for c.<br>Award when $c = \dots$ is seen.                            |               |      |
|                    | No attempted use of $\frac{dy}{dr}$ in (b) scores 0/5                                                                                                         |               |      |
| (c)                | 1 <sup>st</sup> M1 for forming an equation from their $\frac{dy}{dr} (\neq y)$ and their $-\frac{1}{m}$ (must be                                              |               |      |
|                    |                                                                                                                                                               |               |      |
|                    | changed from $m$ )<br>1 <sup>st</sup> A1 for a correct 3TQ all terms on LHS (condone missing =0)                                                              |               |      |
|                    | $2^{nd}$ M1 for proceeding to $x =$ or $3x =$ by formula or completing the square for                                                                         |               |      |
|                    | a 3TQ.<br>Not factorising. Condone <u>+</u>                                                                                                                   |               |      |
|                    | 2 <sup>nd</sup> A1 for proceeding to given answer with no incorrect working seen. Can still                                                                   |               |      |
| ALT                | have <u>+</u> .<br><u>Verify (for M1A1M1A1)</u>                                                                                                               |               |      |
|                    | 1 <sup>st</sup> M1 for attempting to square need $\geq 3$ correct values in $\frac{4+6+4\sqrt{6}}{9}$ , 1 <sup>st</sup> A1 for $\frac{10+4\sqrt{6}}{9}$       |               |      |
|                    | 2 <sup>nd</sup> M1 Dependent on 1 <sup>st</sup> M1 in this case for substituting in all terms of their $\frac{dy}{dx}$                                        |               |      |
|                    | $2^{nd}$ A1cso for cso with a full comment e.g. "the x co-ord of Q is"                                                                                        |               |      |

#### June 2009 6664 Core Mathematics C2 Mark Scheme

| Question<br>Number | Scheme                                                                                                                                                                                               |      | Marks      |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|
| Q1                 | $\int \left(2x + 3x^{\frac{1}{2}}\right) dx = \frac{2x^2}{2} + \frac{3x^{\frac{3}{2}}}{\frac{3}{2}}$                                                                                                 | M1 . | A1A1       |
|                    | $\int_{1}^{4} \left( 2x + 3x^{\frac{1}{2}} \right) dx = \left[ x^{2} + 2x^{\frac{3}{2}} \right]_{1}^{4} = \left( 16 + 2 \times 8 \right) - \left( 1 + 2 \right)$                                     | M1   |            |
|                    | = 29 (29 + <i>C</i> scores A0)                                                                                                                                                                       | A1   | (5)<br>[5] |
|                    | 1 <sup>st</sup> M1 for attempt to integrate $x \to kx^2$ or $x^{\frac{1}{2}} \to kx^{\frac{3}{2}}$ .                                                                                                 |      |            |
|                    | 1 <sup>st</sup> A1 for $\frac{2x^2}{2}$ or a simplified version.                                                                                                                                     |      |            |
|                    | $2^{nd} A1$ for $\frac{3x^{\frac{3}{2}}}{\binom{3}{2}}$ or $\frac{3x\sqrt{x}}{\binom{3}{2}}$ or a simplified version.                                                                                |      |            |
|                    | Ignore + $C$ , if seen, but two correct terms and an <u>extra non-constant</u> term scores M1A1.                                                                                                     | A0.  |            |
|                    | 2 <sup>nd</sup> M1 for correct use of correct limits ('top' – 'bottom'). Must be used in a 'changed function', not just the original. (The changed function may have been found by differentiation). | у    |            |
|                    | Ignore 'poor notation' (e.g. missing integral signs) if the intention is clear.                                                                                                                      |      |            |
|                    | No working:<br>The answer 29 with no working scores M0A0A0M1A0 (1 mark).                                                                                                                             |      |            |

| Question<br>Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Marks                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Q9 (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (Arc length =) $r\theta = r \times 1 = r$ . Can be awarded by implication from later work, e.g.<br>3 <i>rh</i> or $(2rh + rh)$ in the <i>S</i> formula. (Requires use of $\theta = 1$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B1                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (Sector area =) $\frac{1}{2}r^2\theta = \frac{1}{2}r^2 \times 1 = \frac{r^2}{2}$ . Can be awarded by implication from later                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B1                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | work, e.g. the correct volume formula. (Requires use of $\theta = 1$ ).<br>Surface area = 2 sectors + 2 rectangles + curved face                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $(= r^2 + 3rh)$ (See notes below for what is allowed here)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M1                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Volume = $300 = \frac{1}{2}r^2h$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B1<br>A1cso (5)      |
| (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sub for h: $S = r^2 + 3 \times \frac{600}{r} = r^2 + \frac{1800}{r}$ (*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A1030 (3)            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{dS}{dr} = 2r - \frac{1800}{r^2}  \text{or}  2r - 1800r^{-2}  \text{or}  2r + -1800r^{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M1A1                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{dS}{dr} = 0 \implies r^3 =, r = \sqrt[3]{900}, \text{ or AWRT 9.7} $ (NOT -9.7 or ±9.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1, A1 (4)           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{d^2S}{dr^2} = \dots \text{ and consider sign, } \frac{d^2S}{dr^2} = 2 + \frac{3600}{r^3} > 0 \text{ so point is a minimum}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M1, A1ft (2)         |
| (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $S_{\min} = (9.65)^2 + \frac{1800}{9.65}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (Using their value of $r$ , however found, in the given $S$ formula)<br>= 279.65 (AWRT: 280) (Dependent on full marks in part (b))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M1<br>A1 (2)<br>[13] |
| (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1 for attempting a formula (with terms added) for surface area. May be incomplete may have extra term(s), but must have an $r^2$ (or $r^2\theta$ ) term and an $rh$ (or $rh\theta$ ) term.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | or wrong and         |
| (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{\text{In parts (b), (c) and (d), ignore labelling of parts}}{1^{\text{st}} \text{ M1} \text{ for attempt at differentiation (one term is sufficient) } r^n \rightarrow kr^{n-1}}{2^{\text{nd}} \text{ M1}} \text{ for setting their derivative (a 'changed function') = 0 and solving as far as } r^3 = (\text{depending upon their 'changed function', this could be } r = \text{ or } r^2 =, \text{ etc.,} the algebra must deal with a negative power of r and should be sound apart frequencies of sources in the source of the$ | but                  |
| <ul> <li>(c) M1 for attempting second derivative (one term is sufficient) r<sup>n</sup> → kr<sup>n-1</sup>, ar its sign. Substitution of a value of r is not required. (Equating it to zero A1ft for a correct second derivative (or correct ft from their first derivative (e.g. &gt; 0), and conclusion. The actual value of the second derivative, if four score this mark as ft, their second derivative must indicate a minimum. Alternative:</li> <li>M1: Find value of dS/dr on each side of their value of r and consider sign.</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lid reason           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A1ft: Indicate sign change of negative to positive for $\frac{dS}{dr}$ , and conclude minimum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Alternative:<br>M1: Find <u>value</u> of <i>S</i> on each side of their value of <i>r</i> and compare with their 279.65.<br>A1ft: Indicate that both values are more than 279.65, and conclude minimum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |