

Mark Scheme (Results) January 2009

GCE

GCE Mathematics (6663/01)

Question Number	Scheme	Marks
2	$(I =)\frac{12}{6}x^{6} - \frac{8}{4}x^{4} + 3x + c$ = 2x ⁶ - 2x ⁴ + 3x + c	M1 A1A1A1 [4]
	M1 for an attempt to integrate $x^n \rightarrow x^{n+1}$ (i.e. ax^6 or ax^4 or ax , where <i>a</i> is any non-zero constant). Also, this M mark can be scored for just the + <i>c</i> (seen at some stage), even if no other terms are correct. 1 st A1 for 2 x^6 2 nd A1 for $-2x^4$ 3 rd A1 for $3x + c$ (or $3x + k$, etc., any appropriate letter can be used as the constant) Allow $3x^1 + c$, but <u>not</u> $\frac{3x^1}{1} + c$. Note that the A marks can be awarded at separate stages, e.g. $\frac{12}{6}x^6 - 2x^4 + 3x$ scores 2 nd A1 $\frac{12}{6}x^6 - 2x^4 + 3x + c$ scores 3 rd A1 $2x^6 - 2x^4 + 3x$ scores 1 st A1 (even though the <i>c</i> has now been lost).	
	Remember that all the A marks are dependent on the M mark. If applicable, isw (ignore subsequent working) after a correct answer is seen. Ignore wrong notation if the intention is clear, e.g. Answer $\int 2x^6 - 2x^4 + 3x + c dx$.	

Question Number	Scheme	Mar	ks
4	$\left(f(x)=\right)\frac{3x^3}{3} - \frac{3x^{\frac{3}{2}}}{\frac{3}{2}} - 7x(+c)$	M1	
	$= x^3 - 2x^{\frac{3}{2}} - 7x (+c)$	A1A1 M1	
	$f(4) = 22 \implies 22 = 64 - 16 - 28 + c$ $c = 2$	A1cso	(5)
			[5]
	1 st M1 for an attempt to integrate $(x^3 \text{ or } x^{\frac{3}{2}} \text{ seen})$. The <i>x</i> term is insufficient for this mark and similarly the + <i>c</i> is insufficient. 1 st A1 for $\frac{3}{3}x^3$ or $-\frac{3x^{\frac{3}{2}}}{\frac{3}{2}}$ (An unsimplified or simplified correct form) 2 nd A1 for all three <i>x</i> terms correct and simplified (the simplification may be seen later). The + <i>c</i> is not required for this mark. Allow $-7x^1$, but <u>not</u> $-\frac{7x^1}{1}$. 2 nd M1 for an attempt to use $x = 4$ and $y = 22$ in a changed function (even if differentiated) to form an equation in <i>c</i> . 3 rd A1 for <i>c</i> = 2 with no earlier incorrect work (a final expression for f(<i>x</i>) is not required).		

Question Number	Scheme	Marks
6 (a)	$2x^{3/2}$ or $p = \frac{3}{2}$ (<u>Not</u> $2x\sqrt{x}$)	B1
(b)	$-x \text{or} -x^1 \text{or} q = 1$ $\left(\frac{dy}{dx}\right) = 20x^3 + 2 \times \frac{3}{2}x^{\frac{1}{2}} - 1$	B1 (2) M1
	$= \underline{20x^3 + 3x^{\frac{1}{2}} - 1}$	A1A1ftA1ft (4) [6]
(a)	$1^{st} B1 \text{for } p = 1.5 \text{ or exact equivalent} \\ 2^{nd} B1 \text{for } q = 1$	
(b)	M1 for an attempt to differentiate $x^n \to x^{n-1}$ (for any of the 4 terms) 1 st A1 for 20x ³ (the -3 must 'disappear') 2 nd A1ft for $3x^{\frac{1}{2}}$ or $3\sqrt{x}$. Follow through their <i>p</i> but they must be differentiating $2x^p$, where <i>p</i> is a fraction, and the coefficient must be simplified if necessary. 3 rd A1ft for -1 (not the unsimplified $-x^0$), or follow through for correct differentiation of their $-x^q$ (i.e. coefficient of x^q is -1). If ft is applied, the coefficient must be simplified if necessary. 'Simplified' coefficient means $\frac{a}{b}$ where <i>a</i> and <i>b</i> are integers with no common factors. Only a single + or – sign is allowed (e.g. – – must be replaced by +). If there is a 'restart' in part (b) it can be marked independently of part (a), but marks for part (a) cannot be scored for work seen in (b). <u>Multiplying</u> by \sqrt{x} : (assuming this is a restart) e.g. $y = 5x^4\sqrt{x} - 3\sqrt{x} + 2x^2 - x^{\frac{3}{2}}$ $\left(\frac{dy}{dx} = \right)\frac{45}{2}x^{\frac{7}{2}} - \frac{3}{2}x^{-\frac{1}{2}} + 4x - \frac{3}{2}x^{\frac{1}{2}}$ scores M1 A0 A0 (<i>p</i> not a fraction) A1ft.	
	Extra term included: This invalidates the final mark. e.g. $y = 5x^4 - 3 + 2x^2 - x^{\frac{3}{2}} - x^{\frac{1}{2}}$ $\left(\frac{dy}{dx}\right) = 20x^3 + 4x - \frac{3}{2}x^{\frac{1}{2}} - \frac{1}{2}x^{-\frac{1}{2}}$ scores M1 A1 A0 (<i>p</i> not a fraction) A0. <u>Numerator and denominator differentiated separately</u> : For this, neither of the last two (ft) marks should be awarded. <u>Quotient/product rule</u> : Last two terms must be correct to score the last 2 marks. (If the M mark has not already been earned, it can be given for the quotient/product rule attempt.)	

Questior Number	Scheme	Marks
11 (a	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = -4 + 8x^{-2} (4 \text{ or } 8x^{-2} \text{ for } M1 \text{ sign can be wrong})$	M1A1
	$x = 2 \Rightarrow m = -4 + 2 = -2$ $y = 9 - 8 - \frac{8}{2} = -3$ The first 4 marks <u>could</u> be earned in part (b)	B1
	Equation of tangent is: $y+3 = -2(x-2) \rightarrow y = 1-2x$ (*)	M1 A1cso
(b	Gradient of normal = $\frac{1}{2}$	B1ft
	Equation is: $\frac{y+3}{x-2} = \frac{1}{2}$ or better equivalent, e.g. $y = \frac{1}{2}x - 4$	M1A1
(c	$(A:) \frac{1}{2}, (B:) 8$	(3) B1, B1
	Area of triangle is: $\frac{1}{2}(x_B \pm x_A) \times y_P$ with values for all of x_B, x_A and y_P	M1
	$\frac{1}{2}\left(8 - \frac{1}{2}\right) \times 3 = -\frac{45}{4} \text{ or } 11.25$	A1 (4) [13]
(a	1 st M1 for 4 or $8x^{-2}$ (ignore the signs). 1 st A1 for both terms correct (including signs).	
	2^{nd} M1 for substituting $x = 2$ into their $\frac{dy}{dx}$ (must be different from their y)	
	B1 for $y_P = -3$, but not if clearly found from the given equation of the <u>tangent</u> .	
	Apply general principles for straight line equations (see end of scheme). <u>NO DIFFERENTIATION ATTEMPTED</u> : Just assuming $m = -2$ at this stage i 2 nd A1cso for correct work leading to printed answer (allow equivalents with 2x, y, and such as $2x + y - 1 = 0$).	s M0 1 terms
(b	B1ft for correct use of the perpendicular gradient rule. Follow through their m , but i there must be clear evidence that the m is thought to be the gradient of the tanged for an attempt to find normal at P using their changed gradient and their v_{-}	f $m \neq -2$ ent.
	 Apply general principles for straight line equations (see end of scheme). A1 for any correct form as specified above (correct answer only). 	
(c	$1^{\text{st}} \text{ B1 for } \frac{1}{2} \text{ and } 2^{\text{nd}} \text{ B1 for 8.}$	
	M1 for a full method for the area of triangle <i>ABP</i> . Follow through their x_A, x_B and	their y_P , but
	the mark is to be awarded 'generously', condoning sign errors The final answer must be positive for A1, with negatives in the working condor	ned.
	<u>Determinant</u> : Area = $\frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = \frac{1}{2} \begin{vmatrix} 2 & -3 & 1 \\ 0.5 & 0 & 1 \\ 8 & 0 & 1 \end{vmatrix} = \dots$ (Attempt to multiply out requ	ired for M1)
	<u>Alternative</u> : $AP = \sqrt{(2-0.5)^2 + (-3)^2}$, $BP = \sqrt{(2-8)^2 + (-3)^2}$, Area $= \frac{1}{2}AP \times BP = .$	M1
	Intersections with <i>y</i> -axis instead of <i>x</i> -axis: Only the M mark is available B0 B0 M1 A0.	

Mark Scheme (Results) January 2009

GCE

GCE Mathematics (6664/01)

Question Number	Scheme	Marks
2	$y = (1 + x)(4 - x) = 4 + 3x - x^2$ M: Expand, giving 3 (or 4) terms	M1
	$\int (4+3x-x^2) dx = 4x + \frac{3x^2}{2} - \frac{x^3}{3}$ M: Attempt to integrate	M1 A1
	$= \left[\dots \right]_{-1}^{4} = \left(16 + 24 - \frac{64}{3} \right) - \left(-4 + \frac{3}{2} + \frac{1}{3} \right) = \frac{125}{6} \qquad \left(= 20\frac{5}{6} \right)$	M1 A1 (5) [5]
Notes	M1 needs expansion, there may be a slip involving a sign or simple arithme $1 \times 4 = 5$, but there needs to be a 'constant' an 'r term' and an 'r' term'. The	etical error e.g.
	not need to be collected. (Need not be seen if next line correct)	
	Attempt to integrate means that $x^n \rightarrow x^{n+1}$ for at least one of the terms, then awarded (even 4 becoming $4x$ is sufficient) – one correct power sufficient.	n M1 is
	A1 is for correct answer only, not follow through. But allow $2x^2 - \frac{1}{2}x^2$ or an	ny correct
	equivalent. Allow $+ c$, and even allow an evaluated extra constant term.	
	M1 : Substitute limit 4 and limit -1 into a changed function (must be -1) and subtraction (either way round).	d indicate
	A1 must be exact, not 20.83 or similar. If recurring indicated can have the model Negative area, even if subsequently positive loses the A mark.	nark.
Special cases	 (i) Uses calculator method: M1 for expansion (if seen) M1 for limits if answ 0, 1 or 2 marks out of 5 is possible (Most likely M0 M0 A0 M1 A0) (ii) Uses trapezium rule : not exact, no calculus – 0/5 unless expansion mark (iii) Using original method, but then change all signs after expansion is like M1 M1 A0, M1 A0 i.e. 3/5 	wer correct, so k M1 gained. ly to lead to:

Question Number	Scheme	Marks
10 (a)	$2\pi rh + 2\pi r^{2} = 800$ $h = \frac{400 - \pi r^{2}}{\pi r}, \qquad V = \pi r^{2} \left(\frac{400 - \pi r^{2}}{\pi r}\right) = 400r - \pi r^{3} \qquad (*)$	B1 M1, M1 A1 (4)
(b)	$\frac{\mathrm{d}V}{\mathrm{d}r} = 400 - 3\pi r^2$	M1 A1
	$400 - 3\pi r^2 = 0$ $r^2 =, \qquad r = \sqrt{\frac{400}{3\pi}} (= 6.5 \ (2 \text{ s.f.}))$	M1 A1
	$V = 400r - \pi r^3 = 1737 = \frac{800}{3} \sqrt{\frac{400}{3\pi}} \text{ (cm}^3\text{)}$	M1 A1 (6)
(c)	(accept awrt 1/3/ or exact answer) $\frac{d^2 V}{dr^2} = -6\pi r$, Negative, \therefore maximum (Parts (b) and (c) should be considered together when marking)	M1 A1 (2) [12]
<u>Other</u> <u>methods</u> <u>for part</u> (c):	<u>Either:</u> M: Find <u>value</u> of $\frac{dV}{dr}$ on each side of " $r = \sqrt{\frac{400}{3\pi}}$ " and consider sign. A: Indicate sign change of positive to negative for $\frac{dV}{3\pi}$, and conclude max.	
	<u>Or:</u> M: Find <u>value</u> of V on each side of " $r = \sqrt{\frac{400}{3\pi}}$ " and compare with "1737"	" -
	A: Indicate that both values are less than 1737 or 1737.25, and conclude max	ζ.
Notes (a)	B1: For any correct form of this equation (may be unsimplified, may be i M1) M1 : Making <i>h</i> the subject of their three or four term formula M1: Substituting expression for <i>h</i> into $\pi r^2 h$ (independent mark) Must n expression in <i>r</i> only.	mplied by 1 st ow be
(b)	M1: At least one power of <i>r</i> decreased by 1 A1: cao dV	
	M1: Setting $\frac{dr}{dr} = 0$ and finding a value for correct power of <i>r</i> for candida A1: This mark may be credited if the value of <i>V</i> is correct. Otherwise ans round to 6.5 (allow ± 6.5) or be exact answer	te wers should
	M1: Substitute a positive value of r to give V A1: 1737 or 1737.25 of answer	or exact

(c)	M1: needs complete method e.g.attempts differentiation (power reduced) of their first derivative and	
	considers its sign	
	A1(first method) should be $-6\pi r$ (do not need to substitute r and can condone wrong	
	<i>r</i> if found in (b))	
	Need to conclude maximum or indicate by a tick that it is maximum. Throughout allow confused notation such as dy/dx for dV/dr	
Alternative for (a)	$A = 2\pi r^2 + 2\pi rh$, $\frac{A}{2} \times r = \pi r^3 + \pi r^2 h$ is M1 Equate to 400 <i>r</i> B1	
	Then $V = 400r - \pi r^3$ is M1 A1	

Г

Т