Mark Scheme (Results) January 2009

GCE

GCE Mathematics (6663/01)

Question Number	Scheme	Marks
2	$\begin{aligned} & (I=) \frac{12}{6} x^{6}-\frac{8}{4} x^{4}+3 x+c \\ & =2 x^{6}-2 x^{4}+3 x+c \end{aligned}$	M1 A1A1A1 [4]
	M1 for an attempt to integrate $x^{n} \rightarrow x^{n+1}$ (i.e. $a x^{6}$ or $a x^{4}$ or $a x$, where a is any non-zero constant). Also, this M mark can be scored for just the $+c$ (seen at some stage), even if no other terms are correct. $1^{\text {st }}$ A1 for $2 x^{6}$ $2^{\text {nd }}$ A1 for $-2 x^{4}$ $3^{\text {rd }} \mathrm{A} 1$ for $3 x+c$ (or $3 x+k$, etc., any appropriate letter can be used as the constant) Allow $3 x^{1}+c$, but not $\frac{3 x^{1}}{1}+c$. Note that the A marks can be awarded at separate stages, e.g. $\begin{array}{ll} \frac{12}{6} x^{6}-2 x^{4}+3 x & \text { scores } 2^{\text {nd }} \mathrm{A} 1 \\ \frac{12}{6} x^{6}-2 x^{4}+3 x+c & \text { scores } 3^{\text {rd }} \mathrm{A} 1 \\ 2 x^{6}-2 x^{4}+3 x & \text { scores } 1^{\text {st }} \mathrm{A} 1 \text { (even though the } c \text { has now been lost). } \end{array}$ Remember that all the A marks are dependent on the M mark. If applicable, isw (ignore subsequent working) after a correct answer is seen. Ignore wrong notation if the intention is clear, e.g. Answer $\int 2 x^{6}-2 x^{4}+3 x+c \mathrm{~d} x$.	

Question Number	Scheme	Marks
4	$\begin{aligned} (\mathrm{f}(x) & =) \frac{3 x^{3}}{3}-\frac{3 x^{\frac{3}{2}}}{\frac{3}{2}}-7 x(+c) \\ & =x^{3}-2 x^{\frac{3}{2}}-7 x \quad(+c) \\ \mathrm{f}(4) & =22 \Rightarrow 22=64-16-28+c \\ c & \Rightarrow \mathbf{2} \end{aligned}$	M1 A1A1 M1 A1cso (5) [5]
	$1^{\text {st }}$ M1 for an attempt to integrate (x^{3} or $x^{\frac{3}{2}}$ seen). The x term is insufficient for this mark and similarly the $+c$ is insufficient. $1^{\text {st }}$ A1 for $\frac{3}{3} x^{3}$ or $-\frac{3 x^{\frac{3}{2}}}{\frac{3}{2}}$ (An unsimplified or simplified correct form) $2^{\text {nd }}$ A1 for all three x terms correct and simplified... (the simplification may be seen later). The $+c$ is not required for this mark. Allow $-7 x^{1}$, but not $-\frac{7 x^{1}}{1}$. $2^{\text {nd }}$ M1 for an attempt to use $x=4$ and $y=22$ in a changed function (even if differentiated) to form an equation in c. $3^{\text {rd }}$ A1 for $c=2$ with no earlier incorrect work (a final expression for $\mathrm{f}(x)$ is not required).	

Question Number	Scheme	Marks
6 (a) (b)	$\begin{aligned} & \left.2 x^{3 / 2} \quad \text { or } p=\frac{3}{2} \quad \text { (Not } 2 x \sqrt{x}\right) \\ & -x \text { or }-x^{1} \quad \text { or } q=1 \\ & \left(\frac{\mathrm{~d} y}{\mathrm{~d} x}=\right) 20 x^{3}+2 \times \frac{3}{2} x^{1 / 2}-1 \\ & \quad=20 x^{3}+3 x^{\frac{1}{2}}-1 \end{aligned}$	B1 B1 (2) M1 A1A1ftA1ft (4) [6]
(a) (b)	$1^{\text {st }} \mathrm{B} 1 \quad$ for $p=1.5$ or exact equivalent $2^{\text {nd }} \mathrm{B} 1$ for $q=1$ M1 for an attempt to differentiate $x^{n} \rightarrow x^{n-1}$ (for any of the 4 terms) $1^{\text {st }} \mathrm{A} 1$ for $20 x^{3}$ (the -3 must 'disappear') $2^{\text {nd }} \mathrm{A} 1 \mathrm{ft}$ for $3 x^{\frac{1}{2}}$ or $3 \sqrt{x}$. Follow through their p but they must be differentiating $2 x^{p}$, where p is a fraction, and the coefficient must be simplified if necessary. $3^{\text {rd }} \mathrm{A} 1 \mathrm{ft}$ for -1 (not the unsimplified $-x^{0}$), or follow through for correct differentiation of their $-x^{q}$ (i.e. coefficient of x^{q} is -1). If ft is applied, the coefficient must be simplified if necessary. 'Simplified' coefficient means $\frac{a}{b}$ where a and b are integers with no common factors. Only a single + or - sign is allowed (e.g. -- must be replaced by +). If there is a 'restart' in part (b) it can be marked independently of part (a), but marks for part (a) cannot be scored for work seen in (b). Multiplying by \sqrt{x} : (assuming this is a restart) e.g. $y=5 x^{4} \sqrt{x}-3 \sqrt{x}+2 x^{2}-x^{3 / 2}$ $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) \frac{45}{2} x^{7 / 2}-\frac{3}{2} x^{-1 / 2}+4 x-\frac{3}{2} x^{1 / 2} \text { scores M1 A0 A0 (} p \text { not a fraction) A1ft. }$ Extra term included: This invalidates the final mark. $\begin{aligned} & \text { e.g. } y=5 x^{4}-3+2 x^{2}-x^{3 / 2}-x^{1 / 2} \\ & \left(\frac{\mathrm{~d} y}{\mathrm{~d} x}=\right) 20 x^{3}+4 x-\frac{3}{2} x^{1 / 2}-\frac{1}{2} x^{-1 / 2} \text { scores M1 A1 A0 (} p \text { not a fraction) A0. } \end{aligned}$ Numerator and denominator differentiated separately: For this, neither of the last two (ft) marks should be awarded. Quotient/product rule: Last two terms must be correct to score the last 2 marks. (If the M mark has not already been earned, it can be given for the quotient/product rule attempt.)	

\begin{tabular}{|c|c|}
\hline Question Number \& Scheme \({ }^{\text {a }}\) Marks \\
\hline \begin{tabular}{l}
11 (a) \\
(b) \\
(c)
\end{tabular} \& \\
\hline (a)
(b)

(c) \& | $1^{\text {st }} \mathrm{M} 1$ for 4 or $8 x^{-2}$ (ignore the signs). |
| :--- |
| $1^{\text {st }} \mathrm{A} 1$ for both terms correct (including signs). |
| $2^{\text {nd }}$ M1 for substituting $x=2$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ (must be different from their y) |
| B1 for $y_{P}=-3$, but not if clearly found from the given equation of the tangent. |
| $3^{\text {rd }} \mathrm{M} 1$ for attempt to find the equation of tangent at P, follow through their m and y_{P}. |
| Apply general principles for straight line equations (see end of scheme). |
| NO DIFFERENTIATION ATTEMPTED: Just assuming $m=-2$ at this stage is M0 |
| $2^{\text {nd }}$ A1cso for correct work leading to printed answer (allow equivalents with $2 x, y$, and 1 terms... such as $2 x+y-1=0)$. |
| B1ft for correct use of the perpendicular gradient rule. Follow through their m, but if $m \neq-2$ there must be clear evidence that the m is thought to be the gradient of the tangent. |
| M1 for an attempt to find normal at P using their changed gradient and their y_{P}. |
| Apply general principles for straight line equations (see end of scheme). |
| A1 for any correct form as specified above (correct answer only). |
| $1^{\text {st }} \mathrm{B} 1$ for $\frac{1}{2}$ and $2^{\text {nd }} \mathrm{B} 1$ for 8 . |
| M1 for a full method for the area of triangle $A B P$. Follow through their x_{A}, x_{B} and their y_{P}, but the mark is to be awarded 'generously', condoning sign errors.. |
| The final answer must be positive for A1, with negatives in the working condoned. |
| Determinant: Area $=\frac{1}{2}\left\|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right\|=\frac{1}{2}\left\|\begin{array}{ccc}2 & -3 & 1 \\ 0.5 & 0 & 1 \\ 8 & 0 & 1\end{array}\right\|=\ldots$ (Attempt to multiply out required for M1) |
| Alternative: $A P=\sqrt{(2-0.5)^{2}+(-3)^{2}}, B P=\sqrt{(2-8)^{2}+(-3)^{2}}$, Area $=\frac{1}{2} A P \times B P=\ldots$ |
| Intersections with y-axis instead of x-axis: Only the M mark is available B0 B0 M1 A0. |

\hline
\end{tabular}

Mark Scheme (Results) January 2009

GCE

GCE Mathematics (6664/01)

Question Number	Scheme Marks
2	$y=(1+x)(4-x)=4+3 x-x^{2}$ M: Expand, giving 3 (or 4) terms $\int\left(4+3 x-x^{2}\right) \mathrm{d} x=4 x+\frac{3 x^{2}}{2}-\frac{x^{3}}{3}$ M1 $=[\ldots \ldots \ldots \ldots . . .]_{-1}^{4}=\left(16+24-\frac{64}{3}\right)-\left(-4+\frac{3}{2}+\frac{1}{3}\right)=\frac{125}{6} \quad\left(=20 \frac{5}{6}\right)$ M: Attempt to integrate$\|$M1 A1 (5)
Notes	M1 needs expansion, there may be a slip involving a sign or simple arithmetical error e.g. $1 \times 4=5$, but there needs to be a 'constant' an ' x term' and an ' x^{2} term'. The x terms do not need to be collected. (Need not be seen if next line correct) Attempt to integrate means that $x^{n} \rightarrow x^{n+1}$ for at least one of the terms, then M1 is awarded (even 4 becoming $4 x$ is sufficient) - one correct power sufficient. A1 is for correct answer only, not follow through. But allow $2 x^{2}-\frac{1}{2} x^{2}$ or any correct equivalent. Allow $+\boldsymbol{c}$, and even allow an evaluated extra constant term. M1: Substitute limit 4 and limit - 1 into a changed function (must be -1) and indicate subtraction (either way round). A1 must be exact, not 20.83 or similar. If recurring indicated can have the mark. Negative area, even if subsequently positive loses the A mark.
Special cases	(i) Uses calculator method: M1 for expansion (if seen) M1 for limits if answer correct, so 0,1 or 2 marks out of 5 is possible (Most likely M0 M0 A0 M1 A0) (ii) Uses trapezium rule : not exact, no calculus - $0 / 5$ unless expansion mark M1 gained. (iii) Using original method, but then change all signs after expansion is likely to lead to: M1 M1 A0, M1 A0 i.e. 3/5

Question Number	Scheme ${ }^{\text {a }}$ Marks
(a) (b) (c)	
Other methods for part (c):	Either:M: Find value of $\frac{\mathrm{d} V}{\mathrm{~d} r}$ on each side of " $r=\sqrt{\frac{400}{3 \pi}}$ " and consider sign. A: Indicate sign change of positive to negative for $\frac{\mathrm{d} V}{\mathrm{~d} r}$, and conclude max. Or: M: Find value of V on each side of " $r=\sqrt{\frac{400}{3 \pi}}$ " and compare with " 1737 ". A: Indicate that both values are less than 1737 or 1737.25 , and conclude max.
Notes (a) (b)	B1: For any correct form of this equation (may be unsimplified, may be implied by $1^{\text {st }}$ M1) M1: Making h the subject of their three or four term formula M1: Substituting expression for h into $\pi r^{2} h$ (independent mark) Must now be expression in r only. A1: cso M1: At least one power of r decreased by 1 A1: cao M1: Setting $\frac{\mathrm{d} V}{\mathrm{~d} r}=0$ and finding a value for correct power of r for candidate A1 : This mark may be credited if the value of V is correct. Otherwise answers should round to 6.5 (allow ± 6.5) or be exact answer M1: Substitute a positive value of r to give V A1: 1737 or $1737.25 \ldots$. or exact answer

(c) M1: needs complete method e.g.attempts differentiation (power reduced) of their first derivative and considers its sign
A1(first method) should be $-6 \pi r$ (do not need to substitute r and can condone wrong r if found in (b))

Need to conclude maximum or indicate by a tick that it is maximum.
Throughout allow confused notation such as $\mathrm{d} y / \mathrm{d} x$ for $\mathrm{d} V / \mathrm{d} r$
Alternative
for (a)
$A=2 \pi r^{2}+2 \pi r h, \frac{A}{2} \times r=\pi r^{3}+\pi r^{2} h$ is M1 Equate to $400 r$ B1
Then $V=400 r-\pi r^{3}$ is M1 A1

