BINOMIAL EXPANSIONS 2011-13

(a) The terms can be "listed" rather than added. Ignore any extra terms.
$1^{\text {st }} \mathrm{B} 1$: A constant term of 243 seen. Just writing (3) ${ }^{5}$ is B0.
$2^{\text {nd }} \mathrm{B} 1$: Term must be simplified to $405 b x$ for B1. The x is required for this mark. Note
$405+b x$ is B0.
M1: For either the x term or the x^{2} term. Requires correct binomial coefficient in any form with the correct power of x, but the other part of the coefficient (perhaps including powers of 3 and/or b) may be wrong or missing.
Allow binomial coefficients such as $\binom{5}{2},\binom{5}{2},\binom{5}{1},\left(\frac{5}{1}\right),{ }^{5} \mathrm{C}_{2},{ }^{5} \mathrm{C}_{1}$.
A1: For either $270 b^{2} x^{2}$ or $270(b x)^{2}$. (If $270 b x^{2}$ follows $270(b x)^{2}$, isw and allow A1.)
Alternative:
Note that a factor of 3^{5} can be taken out first: $3^{5}\left(1+\frac{b x}{3}\right)^{5}$, but the mark scheme still applies.
Ignore subsequent working (isw): Isw if necessary after correct working:
e.g. $243+405 b x+270 b^{2} x^{2}+\ldots$ leading to $9+15 b x+10 b^{2} x^{2}+\ldots$ scores B1B1M1A1 isw.

Also note that full marks could also be available in part (b), here.
Special Case: Candidate writing down the first three terms in descending powers of x usually get $(b x)^{5}+{ }^{5} \mathrm{C}_{4}(3)^{1}(b x)^{4}+{ }^{5} \mathrm{C}_{3}(3)^{2}(b x)^{3}+\ldots=b^{5} x^{5}+15 b^{4} x^{4}+90 b^{3} x^{3}+\ldots$
So award SC: B0B0M1A0 for either $\left({ }^{5} \mathrm{C}_{4} \times \ldots \times x^{4}\right)$ or $\left({ }^{5} \mathrm{C}_{3} \times \ldots \times x^{3}\right)$
(b) M1 for equating 2 times their coefficient of x to the coefficient of x^{2} to get an equation in b, or equating their coefficient of x to 2 times that of x^{2}, to get an equation in b.
Allow this M mark even if the equation is trivial, providing their coefficients from part (a) have been used, eg: $2(405 b)=270 b$, but beware $b=3$ from this, which is A0.
An equation in b alone is required:
e.g. 2(405b) $x=270 b^{2} x^{2} \Rightarrow b=3$ or similar will be Special Case SC: M1A0 (as equation in coefficients only is not seen here).
e.g. $2(405 b) x=270 b^{2} x^{2} \Rightarrow 2(405 b)=270 b^{2} \Rightarrow b=3$ will get M1A1 (as coefficients rather than terms have now been considered).
Note: Answer of 3 from no working scores M1A0.
Note: The mistake $k\left(1+\frac{b x}{3}\right)^{5}, k \neq 243$ would give a maximum of 3 marks: B0B0M1A0, M1A1
Note: For $270 b x^{2}$ in part (a), followed by $2(405 b)=270 b^{2} \Rightarrow b=3$, in part (b), allow recovery M1A1.
advancing learning, changing lives

\begin{tabular}{|c|c|}
\hline Question number \& Scheme Marks

\hline 3 (a).

(b) \&

\hline Alternative for (b) Special case \& Starts again and expands $(1+0.025)^{8}$ to

$$
\begin{array}{l|l}
1+8 \times 0.025+\frac{8 \times 7}{2}(0.025)^{2}+\frac{8 \times 7 \times 6}{2 \times 3}(0.025)^{3},=1.2184 & \text { B1,M1,A1 } \\
(\text { Or } 1+1 / 5+7 / 400+7 / 8000=1.2184) & \\
\hline
\end{array}
$$

\hline Notes \& | (a) $\mathbf{B 1}$ must be simplified |
| :--- |
| The method mark (M1) is awarded for an attempt at Binomial to get the third and/or fourth term - need correct binomial coefficient combined with correct power of x. Ignore bracket errors or errors in powers of 4. Accept any notation for ${ }^{8} C_{2}$ and ${ }^{8} C_{3}$, e.g. $\binom{8}{2}$ and $\binom{8}{3}$ (unsimplified) or 28 and 56 from Pascal's triangle. (The terms may be listed without + signs) |
| First A1 is for two completely correct unsimplified terms |
| A1 needs the fully simplified $\frac{7}{4} x^{2}$ and $\frac{7}{8} x^{3}$. |
| (b) B1 - states or uses $x=0.1$ or $\frac{x}{4}=\frac{1}{40}$ |
| M1 for substituting their value of $x(0<\mathrm{x}<1)$ into expansion |
| (e.g. 0.1 (correct) or $0.01,0.00625$ or even 0.025 but not 1 nor 1.025 which would earn M0) |
| A1 Should be answer printed cao (not answers which round to) and should follow correct work. |
| Answer with no working at all is B0, M0, A0 |
| States 0.1 then just writes down answer is B1 M0A0 |

\hline
\end{tabular}

Summer 2012

6664 Core Mathematics 2

Mark Scheme

\begin{tabular}{|c|c|}
\hline Question number \& Scheme Marks

\hline 1

Notes \& | $\begin{aligned} {\left[(2-3 x)^{5}\right] } & =\ldots \quad+\binom{5}{1} 2^{4}(-3 x)+\binom{5}{2} 2^{3}(-3 x)^{2}+\ldots, \ldots \ldots \\ & =32,-240 x,+720 x^{2} \end{aligned}$ |
| :--- |
| M1: The method mark is awarded for an attempt at Binomial to get the second and/or third term - need correct binomial coefficient combined with correct power of \boldsymbol{x}. Ignore errors (or omissions) in powers of 2 or 3 or sign or bracket errors. Accept any notation for ${ }^{5} C_{1}$ and ${ }^{5} C_{2}$, e.g. $\binom{5}{1}$ and $\binom{5}{2}$ (unsimplified) or 5 and 10 from Pascal's triangle This mark may be given if no working is shown, but either or both of the terms including x is correct. |
| B1: must be simplified to 32 (writing just 2^{5} is $\mathbf{B 0}$). $\mathbf{3 2}$ must be the only constant term in the final answer- so $32+80-3 x+80+9 x^{2}$ is B 0 but may be eligible for M1A0A0. A1: is cao and is for $-240 x$. (not +-240 x) The x is required for this mark |
| A1: is c.a.o and is for $720 x^{2}$ (can follow omission of negative sign in working) A list of correct terms may be given credit i.e. series appearing on different lines Ignore extra terms in x^{3} and/or x^{4} (isw) |

\hline Special Case \& Special Case: Descending powers of x would be $(-3 x)^{5}+2 \times 5 \times(-3 x)^{4}+2^{2} \times\binom{ 5}{3} \times(-3 x)^{3}+.$. i.e. $-243 x^{5}+810 x^{4}-1080 x^{3}+.$. This is a misread but award as s.c. M1B1A0A0 if completely "correct" or M1 B0A0A0 for correct binomial coefficient in any form with the correct power of x

\hline Alternative Method \& | Method 1: $\left[(2-3 x)^{5}\right]=2^{5}\left(1+\binom{5}{1}\left(-\frac{3 x}{2}\right)+\binom{5}{2}\left(\frac{-3 x}{2}\right)^{2}+..\right)$ is M1B0A0A0 \{ The M1 is for the expression in the bracket and as in first method- need correct binomial coefficient combined with correct power of x. Ignore bracket errors or errors (or omissions) in powers of 2 or 3 or sign or bracket errors \} |
| :--- |
| - answers must be simplified to $=32,-240 x,+720 x^{2}$ for full marks (awarded as before) $\left[(2-3 x)^{5}\right]=2\left(1+\binom{5}{1}\left(-\frac{3 x}{2}\right)+\binom{5}{2}\left(\frac{-3 x}{2}\right)^{2}+..\right)$ would also be awarded M1B0A0A0 |
| Method 2: Multiplying out : B1 for 32 and M1A1A1 for other terms with M1 awarded if x or $x^{\wedge} 2$ term is correct. Completely correct is $4 / 4$ |

\hline
\end{tabular}

J anuary 2013
6664 Core Mathematics C2
Mark Scheme

Question Number	Scheme ${ }^{\text {a }}$ (Marks
3. Way 1	$\left(2-\frac{1}{2} x\right)^{8}=2^{8}+\binom{8}{1} \cdot 2^{7}\left(-\frac{1}{2} x\right)+\binom{8}{2} 2^{6}\left(-\frac{1}{2} x\right)^{2}+\binom{8}{3} 2^{5}\left(-\frac{1}{2} x\right)^{3}$ First term of 256 $\begin{align*} & \left({ }^{8} C_{1} \times \ldots \times x\right)+\left({ }^{8} C_{2} \times \ldots \times x^{2}\right)+\left({ }^{8} C_{3} \times \ldots \times x^{3}\right) \\ = & (256)-512 x+448 x^{2}-224 x^{3} \tag{4} \end{align*}$
Way 2	$\left(2-\frac{1}{2} x\right)^{8}=2^{8}\left(1-\frac{1}{4} x\right)^{8}=2^{8}\left(1+\binom{8}{1} \cdot\left(-\frac{1}{4} x\right)+\binom{8}{2}\left(-\frac{1}{4} x\right)^{2}+\binom{8}{3}\left(-\frac{1}{4} x\right)^{3}\right)$ Scheme is applied exactly as before except in special case below*
	Notes for Question 3
	B1: The first term should be 256 in their expansion M1: Two binomial coefficients must be correct and must be with the correct power of x. Accept ${ }^{8} C_{1}$ or $\binom{8}{1}$ or 8 as a coefficient, and ${ }^{8} C_{2}$ or $\binom{8}{2}$ or 28 as another........ Pascal's triangle may be used to establish coefficients. A1: Any two of the final three terms correct (but allow +- instead of -) A1: All three of the final three terms correct and simplified. (Deduct last mark for $+-512 x$ and +$224 x^{3}$ in the series). Also deduct last mark for the three terms correct but unsimplified. (Accept answers without + signs, can be listed with commas or appear on separate lines) The common error $\left(2-\frac{1}{2} x\right)^{8}=256+\binom{8}{1} \cdot 2^{7}\left(-\frac{1}{2} x\right)+\binom{8}{2} 2^{6}\left(-\frac{1}{2} x^{2}\right)+\binom{8}{3} 2^{5}\left(-\frac{1}{2} x^{3}\right)$ would earn B1, M1, A0, A0 Ignore extra terms involving higher powers. Condone terms in reverse order i.e. $=-224 x^{3}+448 x^{2}-512 x+(256)$ *In Way 2 the error $=2\left(1+\binom{8}{1} \cdot\left(-\frac{1}{4} x\right)+\binom{8}{2}\left(-\frac{1}{4} x\right)^{2}+\binom{8}{3}\left(-\frac{1}{4} x\right)^{3}\right)$ giving $=2-4 x+\frac{7}{2} x^{2}-\frac{7}{4} x^{3}$ is a special case B0, M1, A1, A0 i.e. $2 / 4$

