

BINOMIAL EXPANSIONS 2011-13

Question	Scheme	Marks
Number	33.15.1.15	
5. (a)	$\binom{40}{4} = \frac{40!}{4!b!}$; $(1+x)^n$ coefficients of x^4 and x^5 are p and q respectively. $b=36$ Candidates should usually "identify" two terms as their p and q respectively.	B1 (1)
(b)	Any one of	(1)
	Term 1: $\binom{40}{4}$ or $\frac{40!}{4!36!}$ or $\frac{40(39)(38)(37)}{4!}$ or 91390 Term Term 2 correct. (Ignore the label of p and/or q .)	M1
	2: $\binom{40}{5}$ or $\frac{40!}{5!35!}$ or $\frac{40!}{5!35!}$ or $\frac{40(39)(38)(37)(36)}{5!}$ or 658008 Both of them correct. (Ignore the label of p and/or q .)	A1
	Hence, $\frac{q}{p} = \frac{658008}{91390} \left\{ = \frac{36}{5} = 7.2 \right\}$ for $\frac{658008}{91390}$ oe	A1 oe cso (3) [4]
	Notes	L - J
(a)	B1: for only $b = 36$.	
(D)	The candidate may expand out their binomial series. At this stage no marks should be awarded until they start to identify either one or both of the terms that they want to focus on. Once they identify their terms then if one out of two of them (ignoring which one is p and which one is q) is correct then award M1. If both of the terms are identified correctly (ignoring which one is p and which one is p) then award the first A1. Term $1 = \binom{40}{4}x^4$ or $\binom{40}{4}x^4$ or $\frac{40!}{4!36!}x^4$ or $\frac{40(39)(38)(37)}{4!}x^4$ or $91390x^4$, Term $2 = \binom{40}{5}x^5$ or $\binom{40}{5}(x^5)$ or $\frac{40!}{5!35!}x^5$ or $\frac{40(39)(38)(37)(36)}{5!}x^5$ or $658008x^5$ are fine for any (or both) of the first two marks in part (b). 2^{nd} A1 for stating $\frac{q}{p}$ as $\frac{658008}{91390}$ or equivalent. Note that $\frac{q}{p}$ must be independent of x . Also note that $\frac{36}{5}$ or 7.2 or any equivalent fraction is fine for the 2^{nd} A1 mark. SC: If candidate states $\frac{p}{q} = \frac{5}{36}$, then award M1A1A0. Note that either $\frac{4!36!}{5!35!}$ or $\frac{5!35!}{4!36!}$ would be awarded M1A1.	

Question Number	Scheme		Marks	
2. (a)	$\left\{ (3+bx)^5 \right\} = (3)^5 + \frac{{}^5C_1}{(3)^4}(b\underline{x}) + \frac{{}^5C_2}{(3)^3}(b\underline{x})^2 + \dots$ $= 243 + 405bx + 270b^2x^2 + \dots$	243 as a constant term seen. 405bx (${}^{5}C_{1} \times \times x$) or (${}^{5}C_{2} \times \times x^{2}$) $270b^{2}x^{2}$ or $270(bx)^{2}$	B1 B1 <u>M1</u> A1 [4	ij
(b)	${2(\text{coeff } x) = \text{coeff } x^2} \Rightarrow 2(405b) = 270b^2$	Establishes an equation from their coefficients. Condone 2 on the wrong side of the equation.	M1	
	So, $\left\{b = \frac{810}{270} \Rightarrow\right\} b = 3$	b = 3 (Ignore $b = 0$, if seen.)	A1 [2	2]
(a) (b)	The terms can be "listed" rather than added. Ignore any end of 1st B1: A constant term of 243 seen. Just writing (3)5 is B2 and B1: Term must be simplified to $405bx$ for B1. The x $405 + bx$ is B0. M1: For either the x term or the x^2 term. Requires correct power of x , but the other part of the coefficient (per wrong or missing). Allow binomial coefficients such as $\binom{5}{2}$, $\binom{5}{2}$, $\binom{5}{1}$, $\binom{5}{1}$. A1: For either $270b^2x^2$ or $270(bx)^2$. (If $270bx^2$ follow Alternative: Note that a factor of 3^5 can be taken out first: $3^5 \left(1 + \frac{bx}{3}\right)$. Is wift necessary after e.g. $243 + 405bx + 270b^2x^2 + \dots$ leading to $9 + 15bx + 1000$. Also note that full marks could also be available in part (b), here Special Case: Candidate writing down the first three term $(bx)^5 + {}^5C_4(3)^1(bx)^4 + {}^5C_3(3)^2(bx)^3 + \dots = b^5x^5 + 15b^4x^2$. So award SC: B0B0M1A0 for either $\binom{5}{5}C_4 \times \dots \times x^4$ or	is required for this mark. Note is $\frac{1}{2}$ binomial coefficient in any form $\frac{1}{2}$ branch is $\frac{1}{2}$ correct working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}{2}$ but the mark scheme still applie is recorrect working: $\frac{1}$	with the b) may be s.	6
	Note: The mistake $k \left(1 + \frac{bx}{3}\right)^5$, $k \ne 243$ would give a m Note: For $270bx^2$ in part (a), followed by $2(405b) = 270$			l.

Question number	Scheme	Marks
3 (a).	$(1+\frac{x}{4})^8 = 1+2x+, \dots$	B1
	$+\frac{8\times7}{2}(\frac{x}{4})^2+\frac{8\times7\times6}{2\times3}(\frac{x}{4})^3,$	M1 A1
	$= +\frac{7}{4}x^2 + \frac{7}{8}x^3 \text{or} = +1.75x^2 + 0.875x^3$	A1 (4)
(b)	States or implies that $x = 0.1$	B1
	Substitutes their value of x (provided it is <1) into series obtained in (a)	M1
	i.e. $1 + 0.2 + 0.0175 + 0.000875$, = 1.2184	A1 cao (3)
Alternative	Starts again and expands $(1+0.025)^8$ to	-
for (b) Special case	$1+8\times0.025 + \frac{8\times7}{2}(0.025)^2 + \frac{8\times7\times6}{2\times3}(0.025)^3, = 1.2184$	B1,M1,A1
NT /	(Or 1 + 1/5 + 7/400 + 7/8000 = 1.2184)	
Notes	(Or $1 + 1/5 + 7/400 + 7/8000 = 1.2184$) (a) B1 must be simplified The method mark (M1) is awarded for an attempt at Binomial to get the third and/or fourth term – need correct binomial coefficient combined with correct power of x . Ignore bracket errors or errors in powers of 4. Accept any notation for 8C_2 and 8C_3 , e.g. $\binom{8}{2}$ and $\binom{8}{3}$ (unsimplified) or 28 and 56 from Pascal's triangle. (The terms may be listed without + signs) First A1 is for two completely correct unsimplified terms A1 needs the fully simplified $\frac{7}{4}x^2$ and $\frac{7}{8}x^3$. (b) B1 – states or uses $x = 0.1$ or $\frac{x}{4} = \frac{1}{40}$ M1 for substituting their value of x ($0 < x < 1$) into expansion (e.g. 0.1 (correct) or 0.01, 0.00625 or even 0.025 but not 1 nor 1.025 which would earn M0) A1 Should be answer printed cao (not answers which round to) and should follow correct work. Answer with no working at all is B0, M0, A0 States 0.1 then just writes down answer is B1 M0A0	

Summer 2012 6664 Core Mathematics 2 Mark Scheme

Question number	Scheme	Marks
1	$[(2-3x)^5] = \dots + {5 \choose 1} 2^4 (-3x) + {5 \choose 2} 2^3 (-3x)^2 + \dots \dots$	M1
	$= 32, -240x, +720x^2$	B1, A1, A1
Notes	Total 4 M1 : The method mark is awarded for an attempt at Binomial to get the second and/or third term – need correct binomial coefficient combined with correct power of <i>x</i> . Ignore errors (or omissions) in powers of 2 or 3 or sign or bracket errors. Accept any notation for 5C_1 and 5C_2 , e.g. $\binom{5}{1}$ and $\binom{5}{2}$ (unsimplified) or 5 and 10 from Pascal's triangle This mark may be given if no working is shown, but either or both of the terms including <i>x</i> is correct. B1: must be simplified to 32 (writing just 2^5 is B0). 32 must be the only constant term in the final answer- so $32 + 80 - 3x + 80 + 9x^2$ is B0 but may be eligible for M1A0A0. A1: is cao and is for $-240x$. (not $+-240x$) The <i>x</i> is required for this mark A1: is c.a.o and is for $720x^2$ (can follow omission of negative sign in working) A list of correct terms may be given credit i.e. series appearing on different lines Ignore extra terms in x^3 and/or x^4 (isw)	
Special Case	Special Case: Descending powers of x would be $(-3x)^5 + 2 \times 5 \times (-3x)^4 + 2^2 \times \binom{5}{3} \times (-3x)^3 +$ i.e. $-243x^5 + 810x^4 - 1080x^3 +$ This is a misread but award as s.c. M1B1A0A0 if completely "correct" or M1 B0A0A0 for correct binomial coefficient in any form with the correct power of x	
Alternative Method		
	for the expression in the bracket and as in first method– need correct bin coefficient combined with correct power of x . Ignore bracket errors or errors (or powers of 2 or 3 or sign or bracket errors) – answers must be simplified to = 32 , $-240x$, $+720x^2$ for full marks (awar $\left[(2-3x)^5\right] = 2(1+\binom{5}{1}(-\frac{3x}{2})+\binom{5}{2}(\frac{-3x}{2})^2+$) would also be awarded Method 2: Multiplying out : B1 for 32 and M1A1A1 for other terms with M1	omial romissions) in rded as before) M1B0A0A0

January 2013 6664 Core Mathematics C2 Mark Scheme

Question Number	Scheme		Marks
1.	$(2-5x)^6$		
	$(2^6 =) 64$	Award this when first seen (not $64x^0$)	B1
	$+6 \times (2)^{5} (-5x) + \frac{6 \times 5}{2} (2)^{4} (-5x)^{2}$	Attempt binomial expansion with correct structure for at least one of these terms. E.g. a term of the form: $\binom{6}{p} \times (2)^{6-p} (-5x)^p$ with $p=1$ or $p=2$ consistently. Condone sign errors. Condone missing brackets if later work implies correct structure and allow alternative forms for binomial coefficients e.g. $\binom{6}{1}$ or even $\binom{6}{1}$	M1
	-960 <i>x</i>	Not $+-960x$	A1 (first)
	$(+)6000x^2$		A1 (Second)
			(4)
Way 2	64(1±)	64 and $(1 \pm Award when first seen.$	B1
	$\left(1 - \frac{5x}{2}\right)^6 = 1 \underline{\qquad -6 \times \frac{5x}{2}} + \frac{6 \times 5}{2} \left(-\frac{5x}{2}\right)^2$	brackets if later work implies correct structure but it must be an expansion of $(1-kx)^6$ where $k \neq \pm 5$	M1
	-960 <i>x</i>	Not $+-960x$	A1
	$(+)6000x^2$		A1
			(4)

Question Number	Scheme	Marks	
3. Way 1	$\left(2 - \frac{1}{2}x\right)^8 = 2^8 + {8 \choose 1} \cdot 2^7 \left(-\frac{1}{2}x\right) + {8 \choose 2} 2^6 \left(-\frac{1}{2}x\right)^2 + {8 \choose 3} 2^5 \left(-\frac{1}{2}x\right)^3$		
	First term of 256	B1	
	$\left({}^{8}C_{1}\times\times x\right)+\left({}^{8}C_{2}\times\times x^{2}\right)+\left({}^{8}C_{3}\times\times x^{3}\right)$	M1	
	$= (256) - 512x + 448x^2 - 224x^3$	A1, A1 (4)	
		Total 4	
Way 2	$\left(2 - \frac{1}{2}x\right)^8 = 2^8 \left(1 - \frac{1}{4}x\right)^8 = 2^8 \left(1 + \binom{8}{1} \cdot \left(-\frac{1}{4}x\right) + \binom{8}{2} \left(-\frac{1}{4}x\right)^2 + \binom{8}{3} \left(-\frac{1}{4}x\right)^3\right)$		
	Scheme is applied exactly as before except in special case below*		
	Notes for Question 3		
	B1: The first term should be 256 in their expansion		
	M1: Two binomial coefficients must be correct and must be with the correct power of x .		
	Accept ${}^{8}C_{1}$ or ${}^{8}C_{1}$ or 8 as a coefficient, and ${}^{8}C_{2}$ or ${}^{8}C_{2}$ or 28 as another Pascal's		
	triangle may be used to establish coefficients.		
	A1: Any two of the final three terms correct (but allow +- instead of -)		
	A1: All three of the final three terms correct and simplified. (Deduct last mark for +-		
	$224x^3$ in the series). Also deduct last mark for the three terms correct but unsimplified.		
	(Accept answers without + signs, can be listed with commas or appear on separate lines)		
	The common error $\left(2 - \frac{1}{2}x\right)^8 = 256 + \binom{8}{1} \cdot 2^7 \left(-\frac{1}{2}x\right) + \binom{8}{2} 2^6 \left(-\frac{1}{2}x^2\right) + \binom{8}{3} 2^5 \left(-\frac{1}{2}x^3\right)$		
	would earn B1, M1, A0, A0		
	Ignore extra terms involving higher powers.		
	Condone terms in reverse order i.e. = $-224x^3 + 448x^2 - 512x + (256)$		
	*In Way 2 the error = $2\left(1+\binom{8}{1}\cdot\left(-\frac{1}{4}x\right)+\binom{8}{2}\left(-\frac{1}{4}x\right)^2+\binom{8}{3}\left(-\frac{1}{4}x\right)^3\right)$ giving		
	$= 2 - 4x + \frac{7}{2}x^2 - \frac{7}{4}x^3 \text{ is a special case B0, M1, A1, A0 i.e. 2/4}$		