6. (a)	200 o	r 200g	B1 (1)
(b)	P(190 < X)	X < 210 = 0.6 or $P(X < 210) = 0.8$ or $P(X > 210) = 0.2$ or diagram (o.e.)	M1
	,	Correct use of 0.8 or 0.2	A1
	$\mathbf{Z} = ($	$(\pm)\frac{210-200}{\sigma}$	M1
	$\mathbf{Z} = (\mathbf{z})$	$(\pm) \overline{\sigma}$	1.611
		$\frac{10}{\sigma} = 0.8416$ 0.8416	B1
		$\sigma = 11.882129$ AWRT 11.9	A1
		(180, 200)	(5)
(c)	P(X	$<180) \qquad = P\left(Z < \frac{180 - 200}{\sigma}\right)$	M1
		= P(Z < -1.6832)	
		=1-0.9535	M1
		= 0.0465 or AWRT 0.046	A1 (3)
			Total 9 marks
(a)		"mean = $200g$ " is B0 but "median = 200 " or just " 200 " alone is B1	
	Stand	lardization in (b) and (c). They must use σ not σ^2 or $\sqrt{\sigma}$.	
(b)	1 st M1	for a correct probability statement (as given or eg P(200 <x<210)=0.3 o.e.)<="" td=""><td></td></x<210)=0.3>	
	1 st A1	or shaded diagram - must have values on z-axis and probability areas shown for correct use of 0.8 or $n = 0.2$. Need a correct probability statement	l
	I AI	for correct use of 0.8 or $p = 0.2$. Need a correct probability statement. May be implied by a suitable value for z seen (e.g. $z = 0.84$)	
	2 nd M1	for attempting to standardise. Values for x and μ used in formula.	
		Don't need $z =$ for this M1 nor a z-value, just mark standardization.	
	B1	for $z = 0.8416$ (or better) [$z = 0.84$ usually just loses this mark in (a)]	
	2 nd A1	for AWRT 11.9	
(c)	1 st M1	for attempting to Standardise with 200 and their sd(>0) e.g. $(\pm)\frac{180-200}{\text{their }\sigma}$	
	2 nd M1	NB on epen this is an A mark ignore and treat it as 2^{nd} M1	
	2 111	for $1 - a$ probability from tables provided compatible with their	
		probability statement.	
	A1	for 0.0465 or AWRT 0.046 (Dependent on both Ms in part (c))	
	•		•

Question Number	Scheme	Marks
Q7 (a)	$z = \frac{53 - 50}{2}$ Attempt to standardise P(X>53)=1-P(Z<1.5) =1-0.9332 =0.0668	A1
(b)	$P(X \le x_0) = 0.01$ $\frac{x_0 - 50}{2} = -2.3263$ $x_0 = 45.3474$ awrt 45.3 or 45.4	[3] M1 M1B1 M1A1 [5]
(c)	P(2 weigh more than 53kg and 1 less) = $3 \times 0.0668^2(1-0.0668)$ = 0.012492487 awrt 0.012	B1M1A1ft A1 [4] Total 12
	Notes:(a) M1 for using 53,50 and 2, either way around on numeratorB1 1- any probability for markA1 0.0668 cao(b) M1 can be implied or seen in a diagramor equivalent with correct use of 0.01 or 0.99M1 for attempt to standardise with 50 and 2 numerator either way aroundB1 for ± 2.3263 M1 Equate expression with 50 and 2 to a z value to form an equation with consistentsigns and attempt to solveA1 awrt 45.3 or 45.4(c) B1 for 3,M1 $p^2(1-p)$ for any value of pA1ft for p is their answer to part (a) without 3A1 awrt 0.012 or 0.0125	

Question Number	Scheme	Mar	ks
6 (a)	$P(X < 39) = P\left(Z < \frac{39 - 30}{5}\right)$ = P(Z < 1.8) = <u>0.9641</u> (allow awrt 0.964)	M1 A1	(2)
(b)	$P(X < d) = P\left(Z < \frac{d - 30}{5}\right) = 0.1151$ $1 - 0.1151 = 0.8849$ $\Rightarrow z = -1.2$ $\therefore \frac{d - 30}{5} = -1.2$ $\frac{d = 24}{24}$ (allow ± 1.2)	M1 B1 M1A1	(4)
(c)	P(X > e) = 0.1151 so $e = \mu + (\mu - \text{their } d)$ or $\frac{e - 30}{5} = 1.2 \text{ or } - \text{their } z$	M1	
(d)	e = 36 P(d< X < e) = 1-2×0.1151	A1	(2)
	= 0.7698 AWRT <u>0.770</u>	M1 A1	(2) [10]
(a)	Answer only scores all marks in each section BUT check (b) and (c) are in correct of M1 for standardising with σ , $z = \pm \frac{39-30}{5}$ is OK A1 for 0.9641 or awrt 0.964 but if they go on to calculate 1 – 0.9641 they get M1A0		
(b)	A1 for 0.9641 or awrt 0.964 but if they go on to calculate $1 - 0.9641$ they get M1A0 1 st M1 for attempting 1- 0.1151. Must be seen in (b) in connection with finding <i>d</i> B1 for $z = \pm 1.2$. They must state $z = \pm 1.2$ or imply it is a <i>z</i> value by its use. This mark is only available in part (b). 2 nd M1 for $\left(\frac{d-30}{5}\right)$ = their negative <i>z</i> value (or equivalent)		
(c)	M1 for a full method to find <i>e</i> . If they used $z = 1.2$ in (b) they can get M1 for $z = \pm 1.2$ If they use symmetry about the mean $\mu + (\mu - \text{their } d)$ then ft their <i>d</i> for M1 Must explicitly see the method used unless the answer is correct.	here	
(d)	M1 for a complete method or use of a correct expression e.g. "their 0.8849" - 0.1151 <u>or</u> If their $d < $ their e using their values with $P(X < e) - P(X < d)$ If their $d \ge$ their e then they can only score from an argument like $1 - 2x0.1151$ A negative probability or probability > 1 for part (d) scores M0A0		

edexcel

Question Number	Scheme	Ма	arks
Q8 (a)	Let the random variable <i>X</i> be the lifetime in hours of bulb		
	$P(X < 830) = P(Z < \frac{\pm (830 - 850)}{50})$ Standardising with 850 and 50	M1	
	= P(Z <-0.4) = 1 - P(Z < 0.4) Using 1-(probability>0.5) = 1 - 0.6554	M1	
	= 0.3446 or 0.344578 by calculator awrt 0.345	A1	(3)
(b)	$\begin{array}{ccc} 0.3446 \times 500 & \text{Their (a) x 500} \\ = 172.3 & \text{Accept } 172.3 \text{ or } 172 \text{ or } 173 \end{array}$	M1 A1	(2)
(c)	Standardise with 860 and σ and equate to z value $\frac{\pm(818-860)}{\sigma} = z$ value	M1	(-)
	$\frac{818-860}{\sigma} = -0.84(16) \text{ or } \frac{860-818}{\sigma} = 0.84(16) \text{ or } \frac{902-860}{\sigma} = 0.84(16) \text{ or equiv.}$	A1	
	$\pm 0.8416(2)$ $\sigma = 49.9$ 50 or awrt 49.9	B1 A1	
(d)	Company Y as the <u>mean</u> is greater for Y.bothThey have (approximately) the same <u>standard deviation</u> or <u>sd</u>	B1 B1	(4)
			(2) [11]
Notes	8(a) If 1- <i>z</i> used e.g. 1-0.4=0.6 then award second M0 8(c) M1 can be implied by correct line 2 A1 for completely correct statement or equivalent. Award B1 if 0.8416(2) seen Do not award final A1 if any errors in solution e.g. negative sign lost. 8(d) Must use statistical terms as underlined.		

Ques Num	stion ber	Scheme	Marks
Q7	(a)	bell shaped, must have inflexions	B1
		5% 30% 154,172 on axis	B1
		5% and 30%	B1 (3)
	(b)	$\mu = 1/2$ P(X <154) = 0.05	
		$\frac{154 - \mu}{\sigma} = -1.6449 \text{or} \frac{\mu - 154}{\sigma} = 1.6449$ $\mu = 154 + 1.6449\sigma **\text{given}**$	M1 B1
	(c)	$\mu = 134 + 1.04490 \text{ or } given + 2$ $172 - \mu = 0.5244\sigma \text{ or } \frac{172 - \mu}{\sigma} = 0.5244 \qquad (allow \ z = 0.52 \text{ or better here b})$	A1 cso (3) ut B1
		σ must be in an equation Solving gives $\sigma = 8.2976075$ (awrt 8.30) and $\mu = 167.64873$ (awrt 168)	1) M1 A1 A1 (4)
	(d)	P(Taller than 160cm) = P $\left(Z > \frac{160 - \mu}{\sigma}\right)$	M1
		= P(Z < 0.9217994)	B1
		= 0.8212 awrt 0.82	A1
			(3) Total [13]
(a)		2^{nd} B1 for 154 and 172 marked but 154 must be $< \mu$ and $172 > \mu$. But μ need no	t be marked.
		Allow for $\frac{154-\mu}{\sigma}$ and $\frac{172-\mu}{\sigma}$ marked on appropriate sides of the peak.	
		3^{rd} B1 the 5% and 30% should be clearly indicated in the correct regions i.e. LH ta	
(b)		M1 for $\pm \frac{(154 - \mu)}{\sigma} = z$ value (z must be recognizable e.g. 1.64, 1.65, 1.96 but N	IOT 0.5199 etc)
		B1 for ± 1.6449 seen in a line before the final answer.	
		A1cso for no incorrect statements (in μ , σ) equating a z value and a probability of e.g. $\frac{154-\mu}{\sigma} = 0.05$ or $\frac{154-\mu}{\sigma} = 1.6449$ or $P(Z < \frac{\mu-154}{\sigma}) = 1.6449$	incorrect signs
(c)		B1 for a correct 2^{nd} equation (NB $172 - \mu = 0.525\sigma$ is B0, since z is incorrect)	
		M1 for solving their two linear equations leading to $\mu = \dots$ or $\sigma = \dots$	
		1 st A1 for σ = awrt 8.30, 2 nd A1 for μ = awrt 168 [NB the 168 can come from fals These A marks require use of correct equation from (b), and a <i>z</i> value for "(NB use of <i>z</i> = 0.52 will typically get σ =8.31 and μ = 167.67 and score B <u>No working</u> and both correct scores 4/4, only one correct scores 0/4 Provided the M1 is scored the A1s can be scored even with B0 (e.g. for <i>z</i> =).5244" in (c)] 1M1A0A1
(d)		M1 for attempt to standardise with 160, their μ and their σ (> 0). Even allow with sym B1 for $z = awrt \pm 0.92$	bols μ and σ .
		<u>No working</u> and a correct answer can score 3/3 provided σ and μ are correct	t to 2sf.

Question Number	Scheme	Marks
Q7 (a)	$P(D > 20) = P\left(Z > \frac{20 - 30}{8}\right)$	M1
	= P(Z > 1.25)	A1
	= <u>0.8944</u> <u>awrt 0.894</u>	A1 (3)
(b)	$P(D < Q_3) = 0.75$ so $\frac{Q_3 - 30}{8} = 0.67$	M1 B1
	$Q_3 = $ awrt <u>35.4</u>	A1 (3)
(c)	$35.4 - 30 = 5.4$ so $Q_1 = 30 - 5.4 = $ awrt <u>24.6</u>	B1ft (1)
(d)	$Q_3 - Q_1 = 10.8$ so $1.5(Q_3 - Q_1) = 16.2$ so $Q_1 - 16.2 = h$ or $Q_3 + 16.2 = k$	M1
	$h=\underline{8.4 \text{ to } 8.6}$ and $k=\underline{51.4 \text{ to } 51.6}$ both	A1 (2)
(e)	2P(D > 51.6) = 2P(Z > 2.7)	M1
	= 2[1 - 0.9965] = awrt 0.007	M1 A1 (3)
		Total 12
(a)	M1 for an attempt to standardise 20 or 40 using 30 and 8. $1^{st} A1$ for $z = \pm 1.25$ $2^{nd} A1$ for awrt 0.894	
(b)	M1 for $\frac{Q_3 - 30}{8}$ = to a z value	
	M0 for 0.7734 on RHS. B1 for (z value) between 0.67~0.675 seen. M1B0A1 for use of $z = 0.68$ in correct expression with awrt 35.4	
(c)	Follow through using their of quartile values.	
(d)	M1 for an attempt to calculate 1.5(IQR) and attempt to add or subtract using one of the formulae given in the question - follow through their quartiles	
(e)	1 st M1 for attempting 2P($D >$ their k) or (P($D >$ their k)+ P($D <$ their h)) 2 nd M1 for standardising their h or k (may have missed the 2) so allow for standardising P($D > 51.6$) or P($D < 8.4$) Require boths Ms to award A mark.	