7. The lines l_1 and l_2 have equations $$\mathbf{r} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 3 \\ 4 \end{pmatrix} \text{ and } \mathbf{r} = \begin{pmatrix} \alpha \\ -4 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix}.$$ If the lines l_1 and l_2 intersect, find (a) the value of α , **(4)** (b) an equation for the plane containing the lines l_1 and l_2 , giving your answer in the form ax + by + cz + d = 0, where a, b, c and d are constants. **(4)** For other values of α , the lines l_1 and l_2 do not intersect and are skew lines. Given that $\alpha = 2$, (c) find the shortest distance between the lines l_1 and l_2 . **(3)** | Question 7 continued | bl | |----------------------|----| | | _ | | | _ | | | - | | | | | | _ | | | _ | | | _ | | | _ | | | _ | | | - | | | - | | | - | | | | | | | | | _ | | | _ | | | _ | | | _ | | | - | | | - | | | - | | | _ | | | | | | _ | | | _ | | | _ | | | _ | | | - | | | - | | | - | | | - | 7. The plane Π has vector equation $$\mathbf{r} = 3\mathbf{i} + \mathbf{k} + \lambda (-4\mathbf{i} + \mathbf{j}) + \mu (6\mathbf{i} - 2\mathbf{j} + \mathbf{k})$$ (a) Find an equation of Π in the form $\mathbf{r.n} = p$, where \mathbf{n} is a vector perpendicular to Π and p is a constant. **(5)** The point P has coordinates (6, 13, 5). The line l passes through P and is perpendicular to Π . The line l intersects Π at the point N. (b) Show that the coordinates of N are (3, 1, -1). **(4)** The point R lies on Π and has coordinates (1,0,2). (c) Find the perpendicular distance from N to the line PR. Give your answer to 3 significant figures. **(5)** |
 |
 | | |------|------|--| | | | | | | | | |
 | | | | | | | |
 |
 | | | | | | | | | | | | | | | | | | |
 |
 | | | | | | | | | | | | | | | | | | |
 |
 |
 |
 | | | | | | | |
 | | | | | | | | | | | |
 | | | | | | | |
 | uestion 7 continued | | |---------------------|--| **6.** The plane P has equation $$\mathbf{r} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}$$ (a) Find a vector perpendicular to the plane P. **(2)** The line l passes through the point A(1, 3, 3) and meets P at (3, 1, 2). The acute angle between the plane P and the line l is α . (b) Find α to the nearest degree. **(4)** (c) Find the perpendicular distance from A to the plane P. **(4)** |
 | |------|
 | uestion 6 continued | | |---------------------|--| 3. | The position vectors of the points A , B and C relative to an origin O $\mathbf{i} - 2\mathbf{j} - 2\mathbf{k}$, $7\mathbf{i} - 3\mathbf{k}$ and $4\mathbf{i} + 4\mathbf{j}$ respectively. | are | |----|---|-----------------| | | Find | | | | (a) $\overrightarrow{AC} \times \overrightarrow{BC}$, This is a vector product and not on Core Pure s | syllabus
(4) | | | (b) the area of triangle <i>ABC</i> , | (2) | | | (c) an equation of the plane ABC in the form $\mathbf{r} \cdot \mathbf{n} = p$ | (2) |