7. The lines l_1 and l_2 have equations

$$\mathbf{r} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 3 \\ 4 \end{pmatrix} \text{ and } \mathbf{r} = \begin{pmatrix} \alpha \\ -4 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix}.$$

If the lines l_1 and l_2 intersect, find

(a) the value of α ,

(4)

(b) an equation for the plane containing the lines l_1 and l_2 , giving your answer in the form ax + by + cz + d = 0, where a, b, c and d are constants.

(4)

For other values of α , the lines l_1 and l_2 do not intersect and are skew lines.

Given that $\alpha = 2$,

(c) find the shortest distance between the lines l_1 and l_2 .

(3)

Question 7 continued	bl
	_
	_
	-
	_
	_
	_
	_
	_
	-
	-
	-
	_
	_
	_
	_
	-
	-
	-
	_
	_
	_
	_
	_
	-
	-
	-
	-

7. The plane Π has vector equation

$$\mathbf{r} = 3\mathbf{i} + \mathbf{k} + \lambda (-4\mathbf{i} + \mathbf{j}) + \mu (6\mathbf{i} - 2\mathbf{j} + \mathbf{k})$$

(a) Find an equation of Π in the form $\mathbf{r.n} = p$, where \mathbf{n} is a vector perpendicular to Π and p is a constant.

(5)

The point P has coordinates (6, 13, 5). The line l passes through P and is perpendicular to Π . The line l intersects Π at the point N.

(b) Show that the coordinates of N are (3, 1, -1).

(4)

The point R lies on Π and has coordinates (1,0,2).

(c) Find the perpendicular distance from N to the line PR. Give your answer to 3 significant figures.

(5)

uestion 7 continued	

6. The plane P has equation

$$\mathbf{r} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}$$

(a) Find a vector perpendicular to the plane P.

(2)

The line l passes through the point A(1, 3, 3) and meets P at (3, 1, 2).

The acute angle between the plane P and the line l is α .

(b) Find α to the nearest degree.

(4)

(c) Find the perpendicular distance from A to the plane P.

(4)

uestion 6 continued	

3.	The position vectors of the points A , B and C relative to an origin O $\mathbf{i} - 2\mathbf{j} - 2\mathbf{k}$, $7\mathbf{i} - 3\mathbf{k}$ and $4\mathbf{i} + 4\mathbf{j}$ respectively.	are
	Find	
	(a) $\overrightarrow{AC} \times \overrightarrow{BC}$, This is a vector product and not on Core Pure s	syllabus (4)
	(b) the area of triangle <i>ABC</i> ,	(2)
	(c) an equation of the plane ABC in the form $\mathbf{r} \cdot \mathbf{n} = p$	(2)

