Increasing and Decreasing Functions
A function can be increasing or decreasing throughout its entire domain or for a part of its domain

To show a function is increasing throughout an interval it is necessary and sufficient to show its gradient function is positive throughout that t interval Ex 1 $f(x)=x^{3}+x$

Show that $f(x)$ is an increasing function for $\{x: x \in \mathbb{R}\}$
\forall

$$
f^{\prime}(x)=3 x^{2}+1 \geqslant 1 \quad \text { for all } x \in \mathbb{R}
$$

Since gradient function >0 for all $x \in \mathbb{R}$ $f(x)$ is an increasing function throughout \mathbb{R}

$E \times 2 \quad f(x)=x^{4}-2 x^{2}$
Describe when this function is increasing, decreasing or stationary.

$f(x)$ is decreasing for $x<-1$
$f(x)$ is stationary at $x=-1$
$f(x)$ is increasing for $-1<x<0$
$f(x)$ is stationary at $x=0$
$f(x)$ is decreasing for $0<x<1$
$f(x)$ is stationary at $x=1$
$f(x)$ is increasing for $x>1$
Notice the value of $f^{\prime}(x)$ at these points and in these intervals

Exercise 126 Page 271
Ia) Find when $f(x)$ is increasing

$$
\begin{aligned}
& f(x)=3 x^{2}+8 x+2 \\
& f^{\prime}(x)=6 x+8
\end{aligned}
$$

$f(x)$ is increasing when $f^{\prime}(x)>0$

$$
\begin{array}{rlrl}
& \Rightarrow & 6 x+8 & >0 \\
\Rightarrow & \quad 6 x> & >-8 \\
& \Rightarrow & x>-\frac{4}{3}
\end{array}
$$

(h)

$$
\begin{aligned}
& g(x)=x^{4}-8 x^{3} \\
& g^{\prime}(x)=4 x^{3}-24 x^{2} \\
& g^{\prime}(x)=4 x^{2}(x-6)
\end{aligned}
$$

$g(x)$ is increasing for $x>6$

Sketching Gradient Functions
Exercise 12 J Page 278
(a)

ic)

Homework
Exercise 12 G Page 271 lb, If, Lb, $2 f$
Exercise 12 J Page 278 $\mid b, 1 d, l e, 1 f$,

