## **Increasing and Decreasing Functions**

A function can be increasing or decreasing throughout its entire domain or for a part of its domain

To show a function is increasing throughout an interval it is necessary and sufficient to show its gredient function is positive throughout that interval

 $E_{x1}$   $f(x) = x^3 + x$ 

Show that f(x) is an increasing function for  $\{x:x\in\mathbb{R}\}$ 

f(100) = 300 +1 7/1 for all xER

Since gradient function >0 for all xER

f(si) is an increasing function throughout IR



Ex2  $f(sc) = x^4 - 2x^2$ 

Describe when this function is increasing, decreasing



$$f(x)$$
 is decreasing for  $x < -1$   
 $f(x)$  is stationary at  $x = -1$   
 $f(x)$  is increasing for  $-1 < x < 0$   
 $f(x)$  is stationary at  $x = 0$   
 $f(x)$  is decreasing for  $0 < x < 1$   
 $f(x)$  is stationary at  $x = 1$   
 $f(x)$  is increasing for  $x < 1$ 

Notice the value of f(sc) at these points and in these intervals

Exercise 126 Page 271

Find when 
$$f(x)$$
 is increasing
$$f(x) = 3x^{2} + 8x + 2$$

$$f'(x) = 6x + 8$$

$$f(x) \text{ is increasing when } f'(x) > 0$$

$$\Rightarrow 6x + 8 > 0$$

$$\Rightarrow 6x + 8 > 0$$

$$\Rightarrow 6x + 8 > 0$$

$$g(x) = x^{4} - 8x^{3}$$

$$g'(x) = 4x^{3} - 24x^{2}$$

$$g'(x) = 4x^{2}(x - 6)$$



g(x) is increasing for x>6

## **Sketching Gradient Functions**

Exercise 125 Page 278





## Homework

I

Exercise 126 Page 271
16, 1f, 26, 2f

Exercise 12 J Page 278
16, 1d, le, 1f,