PMT

Iterative Sequences 2006-10

Question number	Scheme	Marks	
2.	(a) $u_2 = (-2)^2 = 4$	B1	
	$u_3 = 1, u_4 = 4$ For u_3 , ft $(u_2 - 3)^2$	B1ft, B1	
		(3)	
	(b) $u_{20} = 4$	B1ft	
		(1)	
		Total 4 marks	
	(b) ft only if sequence is "oscillating".		
	Do <u>not</u> give marks if answers have clearly been obtained from wrong working,		
	e.g. $u_2 = (3-3)^2 = 0$		
	$u_3 = (4-3)^2 = 1$		
	$u_4 = (5-3)^2 = 4$		

PMT

Question number		Scheme		Marks	
4. (a)	$a_2 = 4$ $a_3 = 3 \times a_2 - 5$	5 = 7	B1 B1f.t.	()	
(b)	$a_4 = 3a_3 - 5(=$	=16) and $a_5 = 3a_4 - 5(= 43)$	M1	(2)	
	3+4+7+1	6 + 43	M1		
	= 73		A1c.a.o.	(3)	
				5	
(a)	2 nd B1f.t.	Follow through their a_2 but it must be a value. $3 \times 4-5$ is B0 Give wherever it is first seen.			
(b)	1 st M1	For two further attempts to use of $a_{n+1} = 3a_n - 5$, wherever seen. Condone arithmetic slips			
	2 nd M1	For attempting to add 5 relevant terms (i.e. terms derived from an attempt to use the recurrence formula) or an expression. Follow through their values for $a_2 - a_5$			
		Use of formulae for arithmetic series is M0A0 but could get 1^{st} M1 if a_4 and a_5 are correctly attempted.			

Iterative Sequences 2006-10

Question number	Scheme	Marks	
7.	(a) $1(p+1)$ or $p+1$	B1	(1)
	(b) $((a))(p+(a))$ [(a) must be a function of <i>p</i>]. $[(p+1)(p+p+1)]$	M1	
	$=1+3p+2p^{2}$ (*)	Alcso	(2)
	(c) $1 + 3p + 2p^2 = 1$	M1	
	$p(2p+3) = 0 \qquad \qquad p = \dots$	M1	
	$p = -\frac{3}{2}$ (ignore $p = 0$, if seen, even if 'chosen' as the answer)	A1	(3)
	(d) Noting that even terms are the same.	M1	
	This M mark can be implied by listing at least 4 terms, e.g. 1, $-\frac{1}{2}$, 1, $-\frac{1}{2}$,		
	$x_{2008} = -\frac{1}{2}$	A1	(2)
	_		8
	(b) M: Valid attempt to use the given recurrence relation to find x_3 . <u>Missing brackets</u> , e.g. $p + 1(p + p + 1)$ Condone for the M1, then if all terms in the expansion are correct, with working fully shown, M1 A1 is still allowed. Beware 'working back from the answer', e.g. $1+3p+2p^2 = (1+p)(1+2p)$ scores no marks unless the recurrence relation is justified.		
	 (c) 2nd M: Attempt to solve a quadratic equation in <i>p</i> (e.g. quadratic formula or completing the square). The equation must be based on x₃ = 1. The attempt must lead to a non-zero solution, so just stating the zero solution <i>p</i> = 0 is M0. A: The A mark is dependent on <u>both</u> M marks. 		
	(d) M: Can be implied by a correct answer for their p (answer is $p + 1$), and can also be implied if the working is 'obscure').		
	Trivialising, e.g. $p = 0$, so every term = 1, is M0.		
	If the <u>additional</u> answer $x_{2008} = 1$ (from $p = 0$) is seen, ignore this (isw).		

Question number	Scheme	Marks		
5. (a)	$[x_2 =]a - 3$	B1	(1)	
(b)	$[x_3 =] ax_2 - 3 \text{ or } a(a-3) - 3$	M1		
	= a(a-3)-3 both lines needed for A1			
	$=a^2-3a-3$ (*)	A1cso	(2)	
(c)	$a^2 - 3a - 3 = 7$			
	$a^2 - 3a - 10 = 0$ or $a^2 - 3a = 10$	M1		
	(a-5)(a+2) = 0	dM1		
	a = 5 or -2	A1	(3)	
			6	
(a) (b)	 B1 for a×1-3 or better. Give for a-3 in part (a) or if it appears in (b) they must state x₂ = a-3 This must be seen in (a) or before the a(a-3)-3 step. M1 for clear show that. Usually for a(a-3)-3 but can follow through their x₂ and even allow ax₂-3 			
	A1 for correct processing leading to printed answer. Both lines needed and no incorrect working seen.			
(c)	1 st M1 for attempt to form a correct equation and start to collect terms. It must be need not lead to a 3TQ=0	a quadratic	but	
	2^{nd} dM1 This mark is dependent upon the first M1.			
	for attempt to factorize their $3TQ=0$ or to solve their $3TQ=0$. The "=0" can	be implied.		
	$(x \pm p)(x \pm q) = 0$, where $pq = 10$ or $(x \pm \frac{3}{2})^2 \pm \frac{3}{4} - 10 = 0$ or correct use of quadratic	c formula wi	ith <u>+</u>	
	They must have a form that leads directly to 2 values for <i>a</i> .			
	A1 for both correct answers. Allow $x =$			
	Give 3/3 for correct answers with no working or trial and improvement that gives	<u>both</u> values f	for <i>a</i>	

Jun 2008

•

edexcel

Jun 2009

Question Number	Scheme	Marks	
Q7 (a) (b) (c)	$(a_{2} =)2k - 7$ $(a_{3} =)2(2k - 7) - 7 \text{ or } 4k - 14 - 7, = 4k - 21 \qquad (*)$ $(a_{4} =)2(4k - 21) - 7 (= 8k - 49)$ $\sum_{r=1}^{4} a_{r} = k + "(2k - 7)" + (4k - 21) + "(8k - 49)"$ $k + (2k - 7) + (4k - 21) + (8k - 49) = 15k - 77 = 43 \qquad k = 8$	B1 M1, A1c M1 M1 M1 M1 A1	(1) (2) (4)
			[7]
(b) (c)	M1 must see 2(their a_2) - 7 or 2(2k-7) - 7 or 4k - 14 - 7. Their a_2 must be a function of k. A1cso must see the 2(2k-7) - 7 or 4k - 14 - 7 expression and the 4k - 21 with no incorrect working 1 st M1 for an attempt to find a_4 using the given rule. Can be awarded for 8k - 49 seen. Use of formulae for the sum of an arithmetic series scores M0M0A0 for the next 3 marks. 2 nd M1 for attempting the sum of the 1 st 4 terms. Must have "+" not just , or clear attempt to sum. Follow through their a_2 and a_4 provided they are linear functions of k. Must lead to linear expression in k. Condone use of their linear $a_3 \neq 4k - 21$ here too. 3 rd M1 for forming a linear equation in k using their sum and the 43 and attempt to solve for k as far as $pk = q$ A1 for $k = 8$ only so $k = \frac{120}{15}$ is A0		
	Answer Only (e.g. trial improvement) Accept $k = 8$ only if $8 + 9 + 11 + 15 = 43$ is seen as well Sum $a_2 + a_3 + a_4 + a_5$ or $a_2 + a_3 + a_4$ Allow: M1 if $8k - 49$ is seen, M0 for the sum (since they are not adding the 1 st 4 terms) then M1 if they use their sum along with the 43 to form a linear equation and attempt to solve but A0		

Question Number	Scheme	Marks	
5. (a)	$a_2 = \left(\sqrt{4+3}\right) = \sqrt{7}$	B1	
	$a_3 = \sqrt{\text{"their 7"+3}} = \sqrt{10}$	B1ft	(2)
(b)	$a_4 = \sqrt{10+3} \left(=\sqrt{13}\right)$	M1	
	$a_5 = \sqrt{13 + 3} = 4 *$	A1 cso	(2)
	Notos		4
	INOLES		
(a)	1 st B1 for $\sqrt{7}$ only 2 nd B1ft follow through their "7" in correct formula provided they have \sqrt{n} , where <i>n</i> is a integer.	ın	
(b)	M1 for an attempt to find a_4 . Should see $\sqrt{\text{"their"}(a_3)^2 + 3}$. Must see evidence for $a_4 = \sqrt{13}$ provided this follows from their a_3 working or answer is sufficient	M1.	
	A1cso for a correct solution (M1 explicit) must include the = 4.		
	Ending at $\sqrt{16}$ only is A0 and ending with ± 4 is A0.		
	Ignore any incorrect statements that are not used e.g. common difference = $\sqrt{3}$		
	<u>Listing</u> : A <u>full</u> list: 2 $(=\sqrt{4})$, $\sqrt{7}$, $\sqrt{10}$, $\sqrt{13}$, $\sqrt{16} = 4$ is fine for M1A1		
ALT	Formula: Some may state (or use) $a_n = \sqrt{3n+1}$ leading to $a_5 = \sqrt{3 \times 5 + 1} = 4$. This will get marks in (a) [if correct values are seen] and can score the M1 in (b) if $a_n = \sqrt{3n+1}$ or $a_4 = \sqrt{13}$ are seen.	b)	
±√	If $\pm $ appear any where ignore in part (a) and withhold the final A mark only	ý	