Question number	Scheme	Marks
2.	(a) $u_{2}=(-2)^{2}=4$ $u_{3}=1, u_{4}=4$ For u_{3}, $\mathrm{ft}\left(u_{2}-3\right)^{2}$ (b) $u_{20}=4$	B1 B1ft, B1 B1ft (1) Total 4 marks
	(b) ft only if sequence is "oscillating". Do not give marks if answers have clearly been obtained from wrong working, $\text { e.g. } \begin{aligned} u_{2} & =(3-3)^{2}=0 \\ u_{3} & =(4-3)^{2}=1 \\ u_{4} & =(5-3)^{2}=4 \end{aligned}$	

Question number	Scheme	Marks
4. (a) (b)	$\begin{aligned} & a_{2}=4 \\ & a_{3}=3 \times a_{2}-5=7 \\ & a_{4}=3 a_{3}-5(=16) \text { and } a_{5}=3 a_{4}-5(=43) \\ & 3+4+7+16+43 \\ & =73 \end{aligned}$	B1 B1f.t. M1 M1 A1c.a.o. $\mathbf{5}$
(a) (b)		

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Scheme \& \multicolumn{2}{|c|}{Marks} \\
\hline 7. \& \begin{tabular}{l}
(a) \(1(p+1)\) or \(p+1\) \\
(b)
\[
\begin{align*}
\& ((a))(p+(a)) \\
\& =1+3 p+2 p^{2} \tag{*}
\end{align*}
\] \\
[(a) must be a function of \(p\)].
\[
[(p+1)(p+p+1)]
\] \\
(c)
\[
\begin{array}{rll}
1+3 p+2 p^{2}=1 \& \\
p(2 p+3)=0 \& p=\ldots \\
p=-\frac{3}{2} \& \text { (ignore } p=0, \text { if seen, even if 'chosen' as the answer) }
\end{array}
\] \\
(d) Noting that even terms are the same. \\
This M mark can be implied by listing at least 4 terms, e.g. \(1,-\frac{1}{2}, 1,-\frac{1}{2}, \ldots\)
\[
x_{2008}=-\frac{1}{2}
\]
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
A1cso \\
M1 \\
M1 \\
A1 \\
M1 \\
A1
\end{tabular} \& (1)
(2)

(3)

(2) \\

\hline \& | (b) M: Valid attempt to use the given recurrence relation to find x_{3}. |
| :--- |
| Missing brackets, e.g. $p+1(p+p+1)$ Condone for the M1, then if all terms in the expansion are correct, with working fully shown, M1 A1 is still allowed. |
| Beware 'working back from the answer', e.g. $1+3 p+2 p^{2}=(1+p)(1+2 p)$ scores no marks unless the recurrence relation is justified. |
| (c) $2^{\text {nd }} \mathrm{M}$: Attempt to solve a quadratic equation in p (e.g. quadratic formula or completing the square). |
| The equation must be based on $x_{3}=1$. |
| The attempt must lead to a non-zero solution, so just stating the zero solution $p=0$ is M0. |
| A: The A mark is dependent on both M marks. |
| (d) M: Can be implied by a correct answer for their p (answer is $p+1$), and can also be implied if the working is 'obscure'). |
| Trivialising, e.g. $p=0$, so every term $=1$, is M0. |
| If the additional answer $x_{2008}=1$ (from $p=0$) is seen, ignore this (isw). | \& \& \\

\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Question number \& Scheme \({ }^{\text {a }}\) Marks \\
\hline \begin{tabular}{l}
5. (a) \\
(b) \\
(c)
\end{tabular} \& \\
\hline (a)
(b)

(c) \& | B1 for $a \times 1-3$ or better. Give for $a-3$ in part (a) or if it appears in (b) they must state $x_{2}=a-3$ This must be seen in (a) or before the $a(a-3)-3$ step. |
| :--- |
| M1 for clear show that. Usually for $a(a-3)-3$ but can follow through their x_{2} and even allow $a x_{2}-3$ |
| A1 for correct processing leading to printed answer. Both lines needed and no incorrect working seen. |
| $1^{\text {st }} \mathrm{M} 1$ for attempt to form a correct equation and start to collect terms. It must be a quadratic but need not lead to a $3 T Q=0$ |
| $2^{\text {nd }}$ dM1 This mark is dependent upon the first M1. |
| for attempt to factorize their $3 \mathrm{TQ}=0$ or to solve their $3 \mathrm{TQ}=0$. The " $=0$ "can be implied. |
| $(x \pm p)(x \pm q)=0$, where $p q=10$ or $\left(x \pm \frac{3}{2}\right)^{2} \pm \frac{9}{4}-10=0$ or correct use of quadratic formula with \pm |
| They must have a form that leads directly to 2 values for a. |
| Trial and Improvement that leads to only one answer gets M0 here. |
| A1 for both correct answers. Allow $x=\ldots$ |
| Give $3 / 3$ for correct answers with no working or trial and improvement that gives both values for a | \\

\hline
\end{tabular}

Question Number	Scheme	Marks
Q7 (a) (b) (c)	$\begin{align*} & \left(a_{2}=\right) 2 k-7 \\ & \left(a_{3}=\right) 2(2 k-7)-7 \text { or } 4 k-14-7,=4 k-21 \tag{*}\\ & \left(a_{4}=\right) 2(4 k-21)-7 \quad(=8 k-49) \\ & \quad \sum_{r=1}^{4} a_{r}=k+"(2 k-7) "+(4 k-21)+"(8 k-49) " \\ & k+(2 k-7)+(4 k-21)+(8 k-49)=15 k-77=43 \end{align*}$	B1 (1) M1, A1cso (2) M1 M1 M1 A1 (4) $[7]$
(b) (c)	M1 must see 2(their $\left.a_{2}\right)-7$ or $2(2 k-7)-7$ or $4 k-14-7$. Their a_{2} must be a function of k. A1cso must see the $2(2 k-7)-7$ or $4 k-14-7$ expression and the $4 k-21$ with no incorrect working $1^{\text {st }}$ M1 for an attempt to find a_{4} using the given rule. Can be awarded for $8 k-49$ seen. Use of formulae for the sum of an arithmetic series scores M0M0A0 for the next 3 marks. $2^{\text {nd }}$ M1 for attempting the sum of the $1^{\text {st }} 4$ terms. Must have " + " not just, or clear attempt to sum. Follow through their a_{2} and a_{4} provided they are linear functions of k. Must lead to linear expression in k. Condone use of their linear $a_{3} \neq 4 k-21$ here too. $3^{\text {rd }} \mathrm{M} 1$ for forming a linear equation in k using their sum and the 43 and attempt to solve for k as far as $p k=q$ A1 for $k=8$ only so $k=\frac{120}{15}$ is A0 Answer Only (e.g. trial improvement) Accept $k=8$ only if $8+9+11+15=43$ is seen as well Sum $a_{2}+a_{3}+a_{4}+a_{5}$ or $a_{2}+a_{3}+a_{4}$ Allow: M1 if $8 k-49$ is seen, M0 for the sum (since they are not adding the $1^{\text {st }} 4$ terms) then M1 if they use their sum along with the 43 to form a linear equation and attempt to solve but A0	

