This is concerned with rates of change
Differentiate $y=x^{2}$ from first principles

Find the gradient at any point on the curve $y=x^{2}$

Choose a point on curve (x, y)
Allowing x to change by a small quantity δx causes a small change in y say δy
The chord from (x, y) to $\left(x+\delta x, y+\delta_{x}\right)$ is an approximation to the tangent to the curve at (x, y)

$$
\text { Its gradient }=\frac{y+\delta y-y}{x+\delta x-x}=\frac{\delta y}{\delta x}
$$

As we let $\delta x \rightarrow 0$ then $\delta y \rightarrow 0$ and the chord tends to the tangent at (x, y)

Since both points on curve

$$
\begin{align*}
& y=x^{2} \tag{1}\\
& y+\delta y=(x+\delta x)^{2} \\
& y+\delta y=x^{2}+2 x \delta x+(\delta x)^{2} \tag{2}
\end{align*}
$$

(2) - (1)
$\div \delta x$

$$
\begin{aligned}
& \delta y=2 x \delta x+(\delta x)^{2} \\
& \frac{\delta y}{\delta x}=\frac{2 x \delta x}{\delta x}+\frac{(\delta x)^{2}}{\delta x} \\
& \frac{\delta y}{\delta x}=2 x+\delta x
\end{aligned}
$$

We call the limit as $\delta x \rightarrow 0$ of $\frac{\delta y}{8 x}$ equal to $\frac{d y}{d x}$

$$
\begin{aligned}
& \frac{\delta y}{d x}=2 x+0 \\
& \frac{d y}{d x}=2 x
\end{aligned}
$$

\therefore the gradient at any point (x, y) on the curve $y=x^{2}$ is given by $2 x$

Alternative Notations

$$
\begin{array}{lll}
y=x^{2} & \frac{d}{d x} x^{2}=2 x & f(x)=x^{2} \\
\frac{d y}{d x}=2 x & & f^{\prime}(x)=2 x
\end{array}
$$

In general

$$
\begin{aligned}
\frac{d}{d x} x^{n} & =n x^{n-1} \\
\frac{d}{d x} a x^{n} & =n a x^{n-1}
\end{aligned}
$$

for any constant a for all rational powers n

Examples

$$
\left.\begin{array}{rl}
\frac{d}{d x} x^{4} & =4 x^{3} \\
\frac{d}{d x} x^{10} & =10 x^{9} \\
\frac{d}{d x} x & =1 x^{0}=1 \\
\frac{d}{d x} c & =0
\end{array}\right\} \begin{aligned}
& \text { for }\left\{\begin{array}{l}
\frac{d}{d x} \frac{1}{x} \\
\text { later }
\end{array} \begin{array}{l}
\frac{d}{d x} \sqrt{x} \sqrt{d x} x^{-1}=-\frac{d}{d x} x^{\frac{1}{2}}=\frac{1}{2} x^{-\frac{1}{2}}=\frac{1}{2 \sqrt{x}}
\end{array}\right.
\end{aligned}
$$

Exercise Find $\frac{d y}{d x}$
1)

$$
\begin{aligned}
y & =3 x^{2}+5 x-7 \\
\frac{d y}{d x} & =6 x+5
\end{aligned}
$$

2)

$$
\begin{aligned}
& y=7 x^{7}-6 x^{6}+3 x^{3}+1 \\
& \frac{d y}{d x}=49 x^{6}-36 x^{5}+9 x^{2}
\end{aligned}
$$

3)

$$
\begin{aligned}
y & =x^{4}+x^{3}+x^{2}+x+1 \\
\frac{d y}{d x} & =4 x^{3}+3 x^{2}+2 x+1
\end{aligned}
$$

4)

$$
\begin{aligned}
& y=\frac{1}{2} x^{4}-\frac{1}{3} x^{3}-\frac{1}{4} x^{2}+\frac{1}{5} x-\frac{1}{6} \\
& \frac{d y}{d x}=\frac{4}{2} x^{3}-\frac{3}{3} x^{2}-\frac{2}{4} x+\frac{1}{5} \\
& \frac{d y}{d x}=2 x^{3}-x^{2}-\frac{1}{2} x+\frac{1}{5}
\end{aligned}
$$

Typical Question
Find the equation of the tangent to the curve $y=x^{3}-x^{2}-5 x+3$
at the point where $x=2$
and find the equation of the normal to the curve when $x=4$

Solution
when $x=2$

$$
\begin{aligned}
& y=2^{3}-2^{2}-5(2)+3 \\
& y=8-4-10+3=-3
\end{aligned}
$$

Point is $(2,-3)$

$$
\frac{d y}{d x}=3 x^{2}-2 x-5
$$

when $x=2 \quad \frac{d y}{d x}=3(2)^{2}-2(2)-5$

$$
=12-4-5
$$

$$
=3
$$

Gradient of tat is therefore 3

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y--3=3(x-2) \\
& y+7=3 x-6 \\
& y=3 x-6-3
\end{aligned}
$$

Tangent is $y=3 x-9$
Find eau of normal when $x=4$

$$
\begin{array}{rl}
\text { when } x=4 & y=4^{3}-4^{2}-5(4)+3 \\
& y=64-16-20+3
\end{array}
$$

$$
y=31
$$

Point on curve $(4,31)$
When $x=4 \quad \frac{d y}{d x}=3(4)^{2}-2(4)-5$

$$
=48-8-5
$$

$$
=35
$$

gradient of tat $=35$
\Rightarrow gradient of normal $=-\frac{1}{35}$

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-31=-\frac{1}{35}(x-4) \\
& 35 y-1085=-x+4
\end{aligned}
$$

Normal $\quad x+35 y-1089=0$

