Similar 3D Figures

Length
1:2

Area 1:4

$$
=1^{2}: 2^{2}
$$

Volume $1: 8$

$$
=1^{3}: 2^{3}
$$

In general for similar figures

Length
$a: b$
Area
$a^{2}: b^{2}$
Volume
$a^{3}: b^{3}$

Washing In similar figures angles are preserved.
They are the same ia both shapes

Simple examples

1) A model car is built based on real car with a scale 1:12
If real car has length 4 m what length is the model car?

$$
\text { Model Length }=4 \times \frac{1}{12}=\frac{1}{3} m
$$

If model bonnet has area $240 \mathrm{~cm}^{2}$, find area of real bonnet

Length $1: 12$
Area
Vol

$$
\begin{aligned}
& 1^{2}: 12^{2}=1: 144 \\
& 1^{3}: 12^{3}=1: 1728
\end{aligned}
$$

$$
\begin{aligned}
\text { Real bonnet } & =240 \times 144 \mathrm{~cm}^{2} \\
& =34560 \mathrm{~cm}^{2} \\
& =\frac{34560}{10000} \mathrm{~m}^{2}=3.456 \mathrm{~m}^{2}
\end{aligned}
$$

Exam type question.
Jugs A and B are mathematically similar The base of Jug A has an area of $16 \mathrm{~cm}^{2}$ and the base of Jug B has an area of $25 \mathrm{~cm}^{2}$ If Jug A is 24 cm tall, find height of Jug B If Jug B has a volume of $375 \mathrm{~cm}^{3}$, find volume
of $\operatorname{Jug} A$.

$$
A: B
$$

Area ratio $16: 25$
Lengle ratio $\sqrt{16}: \sqrt{25}$

$$
=4: 5
$$

$$
\begin{aligned}
\text { Volume ruts } & =4^{3}: 5^{3} \\
& =64: 125
\end{aligned}
$$

$$
\begin{aligned}
\text { Height of Jug } B & =24 \mathrm{~cm} \times \frac{5}{4}=30 \mathrm{~cm} \\
\text { Volume of Jus A } & =375 \times \frac{64}{125}=192 \mathrm{cn}^{3}
\end{aligned}
$$

Exercise 14D Page 324 Slue Books
2) Length 4:7
a) Area $4^{2}: 7^{2}=16: 49$
b) Volume $4^{3}: 7^{3}=64: 343$
4) a) Height ratio $1: 2$
b) Volume

$$
1^{3}: 2^{3}=1: 8
$$

c) Volume of larger glass $=1 \times \frac{8}{6}=8$ pints
d) Unfair since eyes perceive volume which
is 8 times bigger not 2 times bigger
1)

Length 2:5
Area $2^{2}: 5^{2}=4: 25$
Volume $2^{3}: 5^{3}=8: 125$
3)

Lin Scale	LinRatio	Lin fraction	Area Scale factor	Volume Scale facer
2	$1: 2$	$\frac{2}{1}$	4	8
3	$1: 3$	$\frac{3}{1}$	9	27
$\frac{1}{4}$	$4: 1$	$\frac{1}{4}$	$\frac{1}{16}$	$\frac{1}{64}$
5	$1: 5$	$\frac{5}{1}$	25	125
$\frac{1}{10}$	$10: 1$	$\frac{1}{10}$	$\frac{1}{100}$	$\frac{1}{1000}$
7	$1: 7$	$\frac{7}{1}$	49	343
$\frac{1}{5}$	$5: 1$	$\frac{1}{5}$	$\frac{1}{25}$	$\frac{1}{125}$
$\frac{1}{2}$	$2: 1$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$

