Quadratic Exam Questions

Questions

Q1.

The curve C has the equation y = x(5 - x) and the line L has equation 2y = 5x + 4

(a) Use algebra to show that C and L do not intersect.

(4)

(b) In figure 1 sketch ${\it C}$ and ${\it L}$ on the same diagram, showing the coordinates of the points at which ${\it C}$ and ${\it L}$

meet the axes.

(4)

(Total 8 marks)

Q2.

The equation $x^2 + (k-3)x + (3-2k) = 0$, where k is a constant, has two distinct real roots.

(a) Show that k satisfies

$$k^2 + 2k - 3 > 0$$

(3)

(b) Find the set of possible values of k.

(4)

(Total 7 marks)

Q3.

$$4x-5-x^2=q-(x+p)^2$$

where p and q are integers.

(a) Find the value of p and the value of q.

(3)

(b) Calculate the discriminant of $4x - 5 - x^2$

(c) On the axes on page 17, sketch the curve with equation $y = 4x - 5 - x^2$ showing clearly the coordinates of any points where the curve crosses the coordinate axes.

(3)

(Total 8 marks)

Q4.

$$f(x) = x^2 + (k+3)x + k$$

where k is a real constant.

(a) Find the discriminant of f(x) in terms of k.

(2)

(b) Show that the discriminant of f(x) can be expressed in the form $(k + a)^2 + b$, where a and b are integers to be found.

(2)

(c) Show that, for all values of k, the equation f(x) = 0 has real roots.

(2)

(Total 6 marks)

Q5.

The equation $kx^2 + 4x + (5 - k) = 0$, where k is a constant, has 2 different real solutions for x.

(a) Show that k satisfies

$$k^2 - 5k + 4 > 0$$
.

(3)

(b) Hence find the set of possible values of k.

(4)

(Total 7 marks)

Q6.

(a) Show that $x^2 + 6x + 11$ can be written as

$$(x+p)^2+q$$

where p and q are integers to be found.

(2)

(b) In the space at the top of page 7, sketch the curve with equation $y = x^2 + 6x + 11$, showing clearly any intersections with the coordinate axes.

(2)

(c) Find the value of the discriminant of $x^2 + 6x + 11$

(2)

(Total 6 marks)

Q7.

$$f(x) = x^2 + 4kx + (3+11k)$$
, where k is a constant.

(a) Express f(x) in the form $(x + p)^2 + q$, where p and q are constants to be found in terms of k.

(3)

Given that the equation f(x) = 0 has no real roots,

(b) find the set of possible values of k.

(4)

Given that k = 1,

(c) sketch the graph of y = f(x), showing the coordinates of any point at which the graph crosses a coordinate axis.

(3)

(Total 10 marks)

Q8.

The equation $x^2 + 3px + p = 0$, where p is a non-zero constant, has equal roots.

Find the value of p.

(4)

(Total 4 marks)

Q9.

The equation

$$(k + 3) x^2 + 6x + k = 5$$
, where k is a constant,

has two distinct real solutions for x.

(a) Show that *k* satisfies

$$k^2 - 2k - 24 < 0$$

(4)

(b) Hence find the set of possible values of k.

(3)

(Total 7 marks)

Q10.

Find the set of values of x for which

(a)
$$2(3x + 4) > 1 - x$$

(2)

(b)
$$3x^2 + 8x - 3 < 0$$

(4)

Q1.

The curve C has the equation y = x(5 - x) and the line L has equation 2y = 5x + 4

(a) Use algebra to show that C and L do not intersect.

(4)

(b) In figure 1 sketch ${\it C}$ and ${\it L}$ on the same diagram, showing the coordinates of the points at which ${\it C}$ and ${\it L}$

meet the axes.

(4)

(Total 8 marks)

$$y = x(s-x) \quad 0$$

$$2y = 5x + 4 \quad 0$$

$$0 \times 2 = 2 \times (5 - \times) \quad \boxed{3}$$

At point of intersection

$$5x + 4 = 2x(5-x)$$

$$5x + 4 = 10x - 2x^{2}$$

$$2x^{2} - 10x + 5x + 4 = 0$$

$$2x^{2} - 5x + 4 = 0$$

Discriminant
$$b^2 - 4ac = (-s)^2 - 4x2x4$$

= 25-32
= -7 < 0

in no roots so point of intersection

$$4x-5-x^2=q-(x+p)^2$$

where p and q are integers.

- (a) Find the value of p and the value of q.
- (b) Calculate the discriminant of $4x 5 x^2$

a)
$$4x - 5 - x^{2}$$

 $= -\left[x^{2} - 4x + 5\right]$
 $= -\left[(x - 2)^{2} + 5 - 4\right]$
 $= -\left[(x - 2)^{2} + 1\right]$
 $= -1 - (x - 2)^{2}$
 $= -1$

b) Discriminant of
$$-x^2 + 4x - 5$$

 $5^2 - 4ac = 4^2 - 4(-1)(-5)$
= 16 -20
= -4

(c) On the axes on page 17, sketch the curve with equation $y = 4x - 5 - x^2$ showing clearly the coordinates of any points where the curve crosses the coordinate axes.

(Total 8 marks)

Q5.

The equation $kx^2 + 4x + (5 - k) = 0$, where k is a constant, has 2 different real solutions for x.

(a) Show that k satisfies

$$k^2 - 5k + 4 > 0$$
.

(3)

(b) Hence find the set of possible values of k.

(4)

(Total 7 marks)

for dutant real solutions b2-4ac >0 => $4^2-4k(5-k)>0$

Q7.

$$f(x) = x^2 + 4kx + (3+11k)$$
, where k is a constant.

(a) Express f(x) in the form $(x + p)^2 + q$, where p and q are constants to be found in terms of k.

(3)

Given that the equation f(x) = 0 has no real roots,

(b) find the set of possible values of k.

(4)

Given that k = 1,

(c) sketch the graph of y = f(x), showing the coordinates of any point at which the graph crosses a coordinate axis.

(3)

(Total 10 marks)

a)
$$f(x) = x^{2} + 4kx + (3+11k)$$

$$= (x+2k)^{2} + 3+11k - 4k^{2}$$

$$= (x+2k)^{2} + (3+11k-4k^{2})$$

$$\rho = 2k$$
 $9 = 3 + 11k - 4k^2$

b) No real roots =>
$$b^{2}-4ac < 20$$

 $\Rightarrow (4k)^{2}-4x1x(3+11k) < 0$
 $16k^{2}-12-44k < 0$
 $4k^{2}-3-11k < 0$
 $4k^{2}-11k -3 < 0$

-4 < K < 3

(4k+1)(k-3) < 0

$$y = x^{2} + 4x + 14$$

 $y = (x+2)^{2} + 10$