3 Over a long period of time, $20 \%$ of all bowls made by a particular manufacturer are imperfect and cannot be sold.
(i) Find the probability that fewer than 4 bowls from a random sample of 10 made by the manufacturer are imperfect.

The manufacturer introduces a new process for producing bowls. To test whether there has been an improvement, each of a random sample of 20 bowls made by the new process is examined. From this sample, 2 bowls are found to be imperfect.
(ii) Show that this does not provide evidence, at the $5 \%$ level of significance, of a reduction in the proportion of imperfect bowls. You should show your hypotheses and calculations clearly.
ii)

$$
E(x)=n p=20 \times 0.2=4
$$

$$
H_{0}: p=0.2
$$

where $p$ is the

$$
H_{1}: p<0.2
$$ prob a randouly chosen bowl is imperfect

$$
\begin{aligned}
& X \sim B(20,0.2) \\
& P(x \leq 2)=0.2061
\end{aligned}
$$

Acceptsto
There is not sufficient evidence to support the view the process his improved. Accept $20 \%$

$$
\begin{aligned}
& \text { Let } x \text { be number of imperfect bowls } \\
& X \sim B(10,0.2) \\
& p(x<4)=p(x \leqslant 3)=0.8791
\end{aligned}
$$

7 A geologist splits rocks to look for fossils. On average $10 \%$ of the rocks selected from a particular area do in fact contain fossils.

The geologist selects a random sample of 20 rocks from this area.
(i) Find the probability that
(A) exactly one of the rocks contains fossils,
$(B)$ at least one of the rocks contains fossils.
(ii) A random sample of $n$ rocks is selected from this area. The geologist wants to have a probability of 0.8 or greater of finding fossils in at least one of the $n$ rocks. Find the least possible value of $n$.
(iii) The geologist explores a new area in which it is claimed that less than $10 \%$ of rocks contain fossils. In order to investigate the claim, a random sample of 30 rocks from this area is selected, and the number which contain fossils is recorded. A hypothesis test is carried out at the 5\% level.
(A) Write down suitable hypotheses for the test.
(B) Show that the critical region consists only of the value 0 .
(C) In fact, 2 of the 30 rocks in the sample contain fossils. Complete the test, stating your conclusions clearly.

Let $x$ be par

$$
X \sim B(20,0-1)
$$

$$
\text { i) A) } \quad P(x=1)=0.2701
$$

$$
\text { B) } \begin{aligned}
P(x \geqslant 1) & =1-P(x=0) \\
& =1-0.9^{20} \\
& =0.8784
\end{aligned}
$$

ii)

$$
\begin{array}{ll}
n=16 & P(x \geqslant 1)=1-0.9^{16}=0.8147>0.8 \\
n=15 & P(x \geqslant 11)=1-0.9^{15}=0.7941<0.8 \\
n=16
\end{array}
$$

iii) A)

$$
\begin{aligned}
& H_{0}: p=0.1 \\
& H_{1}: p<0.1
\end{aligned}
$$

where $P$ is prob a rock contains a fours. 1
B)

$$
\begin{aligned}
& P(x=0)=0.9^{30}=0.0423<5 \% \\
& P(x=1)=\binom{30}{1} \times 0.1^{1} \times 0.9^{29}=0.1413 \\
& \therefore P(x \leq 1)=0.1836>5 \% \\
& \therefore \text { criterion region }=\{0\}
\end{aligned}
$$

c)

$$
\begin{aligned}
P(x=2) & =\binom{30}{2} \times 0.1^{2} \times 0.9^{28} \\
& =0.2277 \\
P(x \leq 2) & =0.2277+0.1413+0.0 \times 23 \\
& =0.4113>5 \%
\end{aligned}
$$

Accept $H_{0}$
There is not sufficient eviclare to Support the vier the proportion his decreased Accept proportion is $10 \%$

