Cylinders, Cones and Spheres

Rearranging Formulae
Sphere $V_{0} l V=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
& 3 V=4 \pi r^{3} \\
& \frac{3 V}{4 \pi}=r^{3} \\
& \sqrt[3]{\frac{3 V}{4 \pi}}=r
\end{aligned}
$$

Using this formula
A cylinder with radius 12 cm and height 30 cm is made out of solid metal. It is melted down and the liquid metal is used to mate a solid sphere. What is the radius of the sphere

$$
\begin{aligned}
\text { Vol of cylinder } & =\pi r^{2} \mathrm{~h} \\
& =\pi \times 12^{2} \times 30 \\
& =4320 \pi
\end{aligned}
$$

If this becomes volume of sphere

$$
\begin{aligned}
R=\sqrt[3]{\frac{3 V}{4 \pi}} & =\sqrt[3]{\frac{3 \times 4320 y}{4 \pi}} \\
& =\sqrt[3]{3240}=14.8 \mathrm{~cm}
\end{aligned}
$$

Similar Question
A solid metal cylinder of radius 10 cm and height 35 cm is melted down and used to form spheres of radius 3 cm . How many spheres are made.

$$
\begin{aligned}
\text { Vol of cylinder } & =\pi r^{2} h \\
& =\pi \times 10^{2} \times 35 \\
& =3500 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

$$
\begin{aligned}
\text { Vol of a sphere } & =\frac{4}{3} \pi R^{3} \\
& =\frac{4}{3} \pi \times 3^{3} \\
& =36 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

$$
\text { Number of spheres }=\frac{3500 \pi}{36 \pi}=97.2
$$

so 97 small spheres

Sphere - Volume and Surface Area
For a sphere with radius r

$$
\text { Volume }=\frac{4}{3} \pi r^{3} \quad \text { Surface Area }=4 \pi r^{2}
$$

(Given on exam paper)

Exercise 4H
(c) Sphere diameter 20 cm so radius 10 cm

$$
V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \times 10^{3}=\frac{4000 \pi \mathrm{~cm}^{3}}{3}
$$

2c) Sphere diameter 14 cm so radius 7 cm

$$
\text { Surface Area }=4 \pi r^{2}=4 \times \pi \times 7^{2}=196 \pi \mathrm{~cm}^{2}
$$

Exercise
Ia) Sphere radius 3 cm

$$
\begin{aligned}
\text { Vol } & =\frac{4}{3} \pi r^{3} \\
& =\frac{4}{3} \pi \times 3^{3}=36 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

2a) Sphere radius Jon

$$
\begin{aligned}
A & =4 \pi r^{2} \\
& =4 \pi \times 3^{2}=36 \pi \mathrm{~cm}^{2}
\end{aligned}
$$

3) Sphere diameter $50 \mathrm{~cm} \Rightarrow$ radius 25 cm

$$
\begin{array}{rlrl}
V=\frac{4}{3} \pi r^{3} & \text { Surface Area } & =4 \pi r^{2} \\
& =\frac{4}{3} \pi \times 25^{3} & & 4 \pi \times 25^{2} \\
& =65450 \mathrm{~cm}^{3} & & =7854 \mathrm{~cm}^{2}
\end{array}
$$

