

Data add 10 adds 10 to the mean Data subtract 10 subtracts 10 from the mean In both these cases the spread of the data is not affected. \because The standard deviation is unaffected

Multiply Data by 3 multiplies the mean by 3 Multiplying the data by 3 multiplies the gaps between the data by 3. This means the standard deviation is multiplied by 3 .
Dividing the date by 2 would divide mean by 2 If also halves the gaps between date items which would divide the standard deviation by 2

In general if data is coded using the formula

$$
y=\frac{x-a}{b}
$$

The new mean $\bar{y}=\frac{\bar{x}-a}{b}$
The new standard deviation $\sigma_{y}=\frac{\sigma_{x}}{b}$

Examples
Mon Tue Wed Thu Fri Sat Sun

$$
\begin{aligned}
\frac{\operatorname{Tax}}{\operatorname{Te} x} x \quad 20^{\circ} \mathrm{C} & 25^{\circ} \mathrm{C} \quad 21^{\circ} \mathrm{C} \quad 30^{\circ} \mathrm{C} 32^{\circ} \mathrm{C} 14^{\circ} \mathrm{C} 16^{\circ} \mathrm{C} \\
\bar{x} & =22.57 \\
\sigma_{x} & =6.276
\end{aligned}
$$

Convert temperatures to Farenheit y

$$
\begin{aligned}
& y= \frac{9 x}{5}+32 \\
& \bar{y}=\frac{9}{5} \bar{x}+32=\frac{9 \times 22.57}{5}+32 \\
&=72.6^{\circ} \mathrm{F} \\
& \sigma_{y}=\frac{9}{5} \sigma_{x}=\frac{9}{5} \times 6.276=11.3^{\circ} \mathrm{F}
\end{aligned}
$$

In a class of 30 students percentage a ttendane was as follows

Nunzr of studails $6 \quad 7 \quad 5 \quad 4 \quad 8$
Attendance $\quad 84 \% \quad 906 \quad 92 \% \quad 966 \quad 100 \%$
Find mean attendance \bar{x} and σ_{x}

$$
\begin{aligned}
& \bar{x}=92.6 \% \\
& \sigma_{x}=5.71 \%
\end{aligned}
$$

If y represents absence ($\%$)
Find \bar{y} and σ_{y}
Coding $\quad y=100-x$

$$
\begin{aligned}
\Rightarrow \quad \bar{y} & =100-\bar{x} \\
& =100-\varepsilon 2.6=7.4 \% \\
\sigma_{y} & =\sigma_{x}=5.71 \%
\end{aligned}
$$

$$
\begin{array}{r}
\text { Ex Fud } \bar{x}, \sigma_{x} \\
50,783,50,964,51,011,50,666,49820 \\
\bar{x}=50648.8 \quad \sigma_{x}=432.6
\end{array}
$$

Alternatively Let $y=x-50006$

Samplefory $783,964,1011,666,-180$

$$
\begin{array}{rl}
\bar{y} \quad & 648.8 \\
\sigma_{y} & 432.6 \\
\bar{y} & =\bar{x}-50000 \\
\bar{y}+50000 & =\bar{x} \\
648.8+50000 & =\bar{x} \\
50648.8 & =\bar{x} \\
\sigma y & =\sigma_{x} \\
432.6 & =\sigma_{x}
\end{array}
$$

Ex 10 from textbook

$$
x \quad 332^{\circ} \mathrm{C} \quad 355^{\circ} \mathrm{C} \quad 306^{\circ} \mathrm{C} \quad 317^{\circ} \mathrm{C} \quad 340^{\circ} \mathrm{C}
$$

Use coding $y=\frac{x-300}{10}$
Without fancy calculator

$$
\begin{array}{llll}
3.2 & 5.5 & 0.6 & 1.7
\end{array} \quad 4.0
$$

$$
\begin{aligned}
& \sum x^{2}=3.2^{2}+5.5^{2}+0.6^{2}+1.7^{2}+4^{2}=59.74 \\
& \sigma_{y}=\sqrt{\frac{59.74}{5}-2.88^{2}}=1.911 \\
& \bar{y}=\frac{\bar{x}-300}{10} \\
& 10 \bar{y}=\bar{x}-300 \\
& 10 \bar{y}+300=\bar{x} \\
& 10 \times 2.88+300=\bar{x} \\
& 328.8^{\circ} \mathrm{C}=\bar{x} \\
& 10 \sigma_{y}=\sigma_{x} \\
& 10 \times 1.911=\sigma_{x} \\
& 19.11=\sigma x
\end{aligned}
$$

Q6 income i for 100 women recordal

$$
\text { coded } \quad y=\frac{i-90}{100}
$$

$$
\sum y=131 \quad \sum_{y}{ }^{2}=176.84
$$

Estimate actual s.d. of income

$$
\begin{aligned}
\sigma_{y} & =\sqrt{\frac{\Sigma_{y}^{2}}{n}-\bar{y}^{2}} \quad \bar{y}=\frac{131}{100}=1.31 \\
& =\sqrt{\frac{176.84}{100}-1.31^{2}}=0.2287
\end{aligned}
$$

$$
\begin{aligned}
\sigma_{y} & =\frac{\sigma_{i}}{100} \\
100 \sigma_{y} & =\sigma_{i} \\
\sigma_{i} & =22.87
\end{aligned}
$$

